Приложение 1 к РПД «Высшая математика» 05.03.01 Геология Направленность (профиль) – Геофизика Форма обучения – очная Год набора - 2020

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.	Кафедра	Общих дисциплин
2.	Направление подготовки	05.03.01 Геология
3.	Направленность (профиль)	Геофизика
4.	Дисциплина (модуль)	Высшая математика
5.	Форма обучения	очная
6.	Год набора	2020

1. Методические рекомендации

Приступая к изучению дисциплины, студенту необходимо внимательно ознакомиться с тематическим планом занятий, списком рекомендованной литературы. Следует уяснить последовательность выполнения индивидуальных учебных заданий. Самостоятельная работа студента предполагает работу с научной и учебной литературой, умение создавать тексты. Уровень и глубина усвоения дисциплины зависят от активной и систематической работы на лекциях, изучения рекомендованной литературы, выполнения контрольных письменных заданий.

При изучении дисциплины студенты выполняют следующие задания:

- изучают рекомендованную научно-практическую и учебную литературу;
- выполняют задания, предусмотренные для самостоятельной работы.

Основными видами аудиторной работы студентов являются лекции и практические занятия.

1.1. Методические рекомендации по организации работы студентов во время проведения лекционных занятий

В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации на практическое занятие и указания на самостоятельную работу.

Знакомство с дисциплиной происходит уже на первой лекции, где от студента требуется не просто внимание, но и самостоятельное оформление конспекта. При работе с конспектом лекций необходимо учитывать тот фактор, что одни лекции дают ответы на конкретные вопросы темы, другие — лишь выявляют взаимосвязи между явлениями, помогая студенту понять последовательность доказательства теорем и решения задач.

Конспектирование лекций — сложный вид вузовской аудиторной работы, предполагающий интенсивную умственную деятельность студента. Конспект является полезным тогда, когда записано самое существенное и сделано это самим обучающимся. Целесообразно вначале понять основную мысль, излагаемую лектором, а затем записать ее. Желательно запись осуществлять на одной странице листа или оставляя поля, на которых позднее, при самостоятельной работе с конспектом, можно сделать дополнительные записи, отметить непонятные места.

Конспект лекции лучше подразделять на пункты, соблюдая красную строку. Этому в большой степени будут способствовать вопросы плана лекции, предложенные преподавателям. Следует обращать внимание на акценты, выводы, формулы, которые делает лектор, отмечая наиболее важные моменты в лекционном материале замечаниями «важно», «хорошо запомнить» и т.п. Можно делать это и с помощью разноцветных маркеров или ручек, подчеркивая термины и определения.

Целесообразно разработать собственную систему сокращений, аббревиатур и символов. Однако при дальнейшей работе с конспектом символы лучше заменить обычными словами для быстрого зрительного восприятия текста.

Работая над конспектом лекций, всегда необходимо использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор. Именно такая серьезная, кропотливая работа с лекционным материалом позволит глубоко овладеть теоретическим материалом.

1.2. Методические рекомендации по подготовке к практическим занятиям

Подготовку к каждому практическому занятию студент должен начать с ознакомления с планом практического занятия, который отражает содержание предложенной темы. Тщательное продумывание и изучение вопросов плана основывается на проработке текущего материала лекции, а затем изучения обязательной и дополнительной литературы, рекомендованной к данной теме. Все новые понятия по изучаемой теме необходимо выучить наизусть и внести в глоссарий, который целесообразно вести с самого начала изучения курса.

Результат такой работы должен проявиться в способности студента свободно ответить на теоретические вопросы практикума, его выступлении и участии в коллективном обсуждении вопросов изучаемой темы, правильном выполнении практических заданий и контрольных работ.

В процессе подготовки к практическим занятиям, студентам необходимо обратить особое внимание на самостоятельное изучение рекомендованной литературы. При всей полноте конспектирования лекции в ней невозможно изложить весь материал из-за лимита аудиторных часов. Поэтому самостоятельная работа с учебниками, учебными пособиями, научной, справочной литературой, материалами периодических изданий и Интернета является наиболее эффективным методом получения дополнительных знаний, позволяет значительно активизировать процесс овладения информацией, способствует более глубокому усвоению изучаемого материала, формирует у студентов свое отношение к конкретной проблеме.

При подготовке к практическому занятию студенты имеют возможность воспользоваться консультациями преподавателя.

Качество учебной работы студентов преподаватель оценивает с использованием технологической карты дисциплины, размещенной на сайте МАГУ.

1.3. Методические рекомендации по работе с литературой

Работу с литературой целесообразно начать с изучения общих работ по теме, а также учебников и учебных пособий.

Работу с источниками надо начинать с ознакомительного чтения, т.е. просмотреть текст, выделяя его структурные единицы. При ознакомительном чтении закладками отмечаются те страницы, которые требуют более внимательного изучения.

В зависимости от результатов ознакомительного чтения выбирается дальнейший способ работы с источником.

Весь текст (если он целиком имеет отношение к теме) требуют вдумчивого, неторопливого чтения с «мысленной проработкой» материала. Такая подготовка предполагает выделение: 1) главного; 2) основных аргументов; 3) доказательств.

Следующим этапом работы с литературными источниками является создание конспектов, фиксирующих основные леммы, теоремы и их доказательство.

Таким образом, при работе с источниками и литературой важно уметь:

- 1. сопоставлять, сравнивать, классифицировать, группировать, систематизировать информацию в соответствии с определенной учебной задачей;
 - 2. обобщать полученную информацию, оценивать прослушанное и прочитанное;
- 3. фиксировать основное содержание сообщений; формулировать, устно и письменно, основную идею сообщения; составлять план;

- 4. работать в разных режимах (индивидуально, в паре, в группе), взаимодействуя друг с другом;
 - 5. пользоваться справочными материалами;
- 6. контролировать свои действия и действия своих товарищей, объективно оценивать свои действия;
- 7. обращаться за помощью, дополнительными разъяснениями к преподавателю, другим студентам.
 - 8. пользоваться словарями различного характера, различного рода подсказками;
 - 9. обратиться за помощью к собеседнику (уточнить вопрос, переспросить и др.);

1.4. Методические рекомендации по подготовке к сдаче зачета и экзамена

Подготовка к зачету/экзамену способствует закреплению, углублению и обобщению знаний, получаемых, в процессе обучения, а также применению их к решению практических задач. Готовясь к зачету/экзамену, обучающийся ликвидирует имеющиеся пробелы в знаниях, углубляет, систематизирует и упорядочивает свои знания. На зачете/экзамене обучающийся демонстрирует то, что он приобрел в процессе изучения дисциплины.

В условиях применяемой в МАГУ балльно-рейтинговой системы подготовка к зачету/экзамену включает в себя самостоятельную и аудиторную работу обучающегося в течение всего периода изучения дисциплины и непосредственную подготовку в дни, предшествующие зачету по разделам и темам дисциплины.

При подготовке к зачету/экзамену обучающимся целесообразно использовать не только материалы лекций, а и рекомендованные преподавателем основную и дополнительную литературу.

При подготовке к промежуточной аттестации целесообразно:

- 10. внимательно изучить перечень вопросов и определить, в каких источниках находятся сведения, необходимые для ответа на них;
 - 11. внимательно прочитать рекомендованную литературу;
 - 12. составить краткие конспекты ответов (планы ответов).

Качество учебной работы студентов преподаватель оценивает с использованием технологической карты дисциплины, размещенной на сайте МАГУ.

1.5. Методические рекомендации для занятий в интерактивной форме

В учебном процессе, помимо аудиторных занятий, используются интерактивные формы (устные опросы на понимание терминов, консультации). В сочетании с внеаудиторной работой это способствует формированию и развитию профессиональных навыков обучающихся.

Интерактивное обучение представляет собой способ познания, осуществляемый в формах совместной деятельности обучающихся, т.е. все участники образовательного процесса взаимодействуют друг с другом, совместно решают поставленные задачи, погружаются в атмосферу делового сотрудничества при ответах на поставленные вопросы.

В курсе изучаемой дисциплины «Высшая математика» интерактивной форме часы используются в виде устных опросов на понимание терминов, консультаций.

Тематика занятий с использованием интерактивных форм

№ п/п	Тема	Интерактивная форма	Часы, отводимые на интерактивные формы	
			лекции	Практические занятия
1.	Числовые последовательности	консультация	-	1
2.	Предельное значение функции	консультация	-	1
3.	Основы дифференциального исчислени	консультация	-	2
4.	Исследование функции	консультация		2
5.	Алгебра матриц	консультация		1

No	Тема	Интерактивная форма	Часы, отводимые на интерактивные формы	
п/п			лекции	Практические занятия
6.	Теория определителей	консультация		1
7.	Системы линейных алгебраических уравнений (СЛАУ	Устный опрос на понимание терминов		2
8.	Алгебра векторов	консультация		2
9.	Метод координат	консультация		2
10.	Прямая и плоскость	консультация		2
11.	Кривые и поверхности второго порядка	Устный опрос на понимание терминов, консультация		2
12.	Неопределенный интеграл	консультация		3
13.	Определенный интеграл	консультация		3
14.	Несобственные интегралы	консультация		2
15.	Функции многих переменных.	Устный опрос на понимание терминов, консультация		2
16.	Экстремумы функций многих переменных.	консультация		2
17.	Случайные события	консультация		2
18.	Случайные величины	консультация		2
19.	Математическая статистика	консультация		2
20.	Уравнения первого порядка	консультация		4
21.	Уравнения <i>п</i> -го порядка	консультация		3
22.	Нормальные системы уравнений	консультация		3
23.	Теория числовых рядов	Устный опрос на понимание терминов, консультация		4
24.	Функциональные ряды	консультация		3
25.	Ряды и интегралы Фурье.	консультация		3
	ИТОГО	56 часов		

2. Планы практических занятий

1 семестр

Раздел 1. Дифференциальные исчисления функции одной переменной Тема 1. Числовые последовательности

План:

- 1. Понятие числовой последовательности.
- 2. Вычисление пределов числовых последовательностей
- 3. Контрольная работа по теме

Литература: [2, с. 127- 132], [5, с. 35-59], [1, с. 20-33]

Вопросы для самоконтроля:

- 1. Дайте определение числовой последовательности.
- 2. Какие последовательности являются бесконечно малыми?
- 3. Перечислите основные свойства сходящихся последовательностей.

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме), подготовка к контрольной работе

Тема 2. Предельное значение функции

План:

- 1. Определение области определения функции.
- 2. Вычисление пределов функции.
- 3. Непрерывность и разрывы функции
- 4. Контрольная работа по теме

Литература: [2, с. 120- 124, 132-161], [5, с. 61-121], [1, с. 69-103]

Вопросы для самоконтроля:

- 1. Дайте определение предела функции по Гейне
- 2. Дайте определение предела функции по Коши
- 3. Поясните понятие бесконечно малых и бесконечно больших функций
- 4. Два замечательных предела
- 5. Перечислите виды разрывов функций

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме), подготовка к контрольной работе

Тема 3. Основы дифференциального исчисления План

- 1. Понятие производной
- 2. Вычисление производных первого порядка
- 3. Вычисление производных высшего порядка
- 4. Вычисление дифференциалов
- 5. Контрольная работа по теме

Литература: [2, с. 161-192], [5, с. 123-158], [1, с. 104-126]

Вопросы для самоконтроля:

- 1. Определение производной, ее физический и геометрический смысл
- 2. Производная любой элементарной функции
- 3. Правила дифференцирования функций
- 4. Дифференциал: определение и формула вычисления

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме), подготовка к контрольной работе

Тема 4. Исследование функции План

- 1. Правило Лопиталя. Раскрытие неопределенностей.
- 2. Отыскание участков монотонности функций.
- 3. Определение экстремумов функции.
- 4. Выпуклость, направление выпуклости и точки перегиба графика функции.
- 5. Асимптоты графика функции.
- 6. Полное исследование функции.

Литература: [2, с. 192-213], [5, с. 172-194], [1, с. 131-135, с. 140-151]

Вопросы для самоконтроля:

- 1. Правило Лопиталя.
- 2. Как найти участки монотонности функции?
- 3. Как найти экстремумы функции?
- 4. Как найти участки выпуклости функции?
- 5. Как найти наклонную асимптоту к графику функции?

Задание для самостоятельной работы

Раздел 2. Элементы линейной алгебры. Тема 1. Алгебра матриц

План

- 1. Линейное преобразование, умножение линейных преобразований. Произведение матриц, матричная запись линейного преобразования и системы линейных уравнений.
- 2. Ассоциативность умножения матриц, транспонирование произведения матриц, умножение на единичную матрицу.
- 3. Сложение, вычитание матриц, произведение матрицы на число. Законы дистрибутивности, ассоциативность умножения на число, скалярная матрица.
- 4. Линейная комбинация матриц, многочлен от матрицы. Сложение и умножение многочленов от матриц. Определитель произведения матриц.
- 5. Обратная, неособенная, взаимная матрица. Условие существования, вычисление обратной матрицы. Обратная матрица для произведения матриц.
- 6. Решение систем линейных уравнений с помощью обратной матрицы. Вычисление обратной матрицы с помощью элементарных преобразований.
- 7. Собственные числа и собственные столбцы матрицы, характеристический многочлен.

Литература: [2, с. 16-20]

Вопросы для самоконтроля:

- 1. Дайте определение понятия матрица.
- 2. Какие матрицы можно перемножать?
- 3. Правило сложения матриц.
- 4. Правило умножения матриц.
- 5. Перечислите элементарные преобразования матриц.
- 6. Понятие обратной матрицы
- 7. Как найти решение системы линейных уравнений с помощью обратной матрицы?
 - 8. Понятие собственных чисел матрицы.

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 2. Теория определителей План

- 1. Определители второго и третьего порядка. Определители n -го порядка. Перестановки, инверсии. Транспозиции. Три свойства перестановок.
- 2. Свойства определителей: определитель транспонированной матрицы, перемена местами строк в определителе, определитель матрицы с одинаковыми строками.
 - 3. Свойства определителей: разложение определителя по строке.
- 4. Свойства определителей: произведение элементов одной строки на алгебраические дополнения другой строки, умножение строки на число, две пропорциональные строки, разложение определителя в сумму двух, прибавление к элементам одной строки элементов другой строки, умноженных на одно и то же число.
 - 5. Определитель Вандермонда. Определитель треугольной матрицы.
 - 6. Контрольная работа по теме 1 и 2.

Литература: [2, с. 20-22]

Вопросы для самоконтроля:

- 1. Понятие определителя
- 2. Изменится ли значение определителя, если в матрице поменять местами строки, столбцы?
 - 3. Чему равен определитель матрицы с одинаковыми строками?
 - 4. Перечислите свойства определителей.
 - 5. Схема вычисления определителей третьего порядка.

Задание для самостоятельной работы

Тема 3. Системы линейных уравнений

План

- 1. Системы линейных уравнений, их типы. Теорема Крамера. Ранг матрицы. Элементарные преобразования матриц. Вычисление ранга с помощью элементарных преобразований. Метод Гаусса. Элементарные преобразования систем линейных уравнений.
- 2. Теорема Кронекера-Капелли. Теорема о числе решений системы линейных уравнений.
- 3. Однородные системы линейных уравнений. Линейная комбинация решений, фундаментальная система решений. Теоремы о структуре общего решения однородной и неоднородной системы линейных уравнений.
 - 4. Контрольная работа по теме 3.

Литература: [2, с. 29-38]

Вопросы для самоконтроля:

- 1. Как определить ранг матрицы?
- 2. Формулы Крамера
- 3. В чем заключается метод Гаусса?
- 4. В каком случае система линейных уравнений имеет единственное решение?
- 5. Что такое фундаментальная система решений?

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Решение контрольной работы по темам 1-4

Тема 4. Алгебра векторов План

- 1. Геометрический вектор, модуль вектора, коллинеарные и компланарные вектора. Свободные, скользящие и связанные вектора. Сумма, разность векторов, произведение вектора на число. Свойства этих операций.
- 2. Ортогональная проекция точки, вектора на прямую и ось. Угол между векторами. Вычисление ортогональной проекции. Ортогональная проекция суммы векторов и произведения вектора на число.
- 3. Линейная комбинация векторов, линейно независимые вектора. Условия линейной зависимости векторов. Базис, разложение вектора по базису, координаты вектора. Изменение координат при сложении векторов и умножении вектора на число, координаты коллинеарных векторов. Ортогональный и ортонормированный базис, направляющие косинусы.
- 4. Скалярное произведение векторов, ортогональные вектора, скалярный квадрат. Свойства скалярного произведения, вычисление скалярного произведения через координаты вектора.
- 5. Векторное произведение векторов, правая тройка векторов. Свойства векторного произведения. Вычисление векторного произведения в координатах.
- 6. Смешанное произведение векторов. Геометрический смысл смешанного произведения. Свойства смешанного произведения. Вычисление смешанного произведения в координатах.

Литература: [2, с. 39-57]

Вопросы для самоконтроля:

- 1. Чем отличаются скалярные и векторные величины?
- 2. Что такое модуль вектора?
- 3. Какие вектора называются коллинеарными?
- 4. Правила сложения и вычитания векторов.
- 5. Как найти скалярное произведение векторов?
- 6. Как найти векторное произведение векторов?
- 7. Как найти смешанное произведение векторов?

Задание для самостоятельной работы

Раздел 3. Аналитическая геометрия Тема 1. Метод координат

План

- 1. Декартова система координат. Преобразование координат точки при замене системы координат. Поворот системы координат на плоскости.
- 2. Нахождение координат вектора, длины отрезка, деление отрезка в заданном отношении.
 - 3. Способы задания кривой в пространстве.
 - 4. Полярная, цилиндрическая, сферическая системы координат.

Литература: [2, с. 58-63]

Вопросы для самоконтроля:

- 1. Как задаются координаты точки в декартовой системе координат?
- 2. Как найти координаты вектора?
- 3. Как определить длину отрезка?
- 4. Перечислите способы задания кривой в пространстве.
- 5. Формулы преобразования координат из декартовой системы в полярную, цилиндрическую, сферическую.

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 2. Прямая и плоскость План

- 1. Аналитическая геометрия на плоскости и в пространстве. Прямая на плоскости и алгебраическая кривая первого порядка. Общее уравнение прямой. Уравнение прямой, проходящей через данную точку перпендикулярно вектору. Уравнение прямой с угловым коэффициентом. Параметрическое, векторное, каноническое уравнение прямой. Уравнение прямой, проходящей через две данные точки. Уравнение прямой в отрезках. Нормальное уравнение прямой. Условия параллельности и перпендикулярности прямых на плоскости, угол между прямыми, расстояние от точки до прямой.
- 2. Плоскость в пространстве и алгебраическая поверхность первого порядка. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку, перпендикулярно вектору. Векторное, параметрическое уравнение плоскости. Уравнение плоскости, проходящей через три данные точки. Уравнение плоскости в отрезках. Нормальное уравнение плоскости.
- 3. Общее уравнение прямой в пространстве. Векторное, параметрическое, каноническое уравнение прямой. Уравнение прямой, проходящей через две данные точки. Угол между плоскостями, между прямыми в пространстве. Взаимное расположение прямых в пространстве (канонические и общие уравнения). Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью. Расстояние от точки до плоскости, от точки до прямой, между прямыми, между прямой и плоскостью.

Литература: [2, с. 64-73, с. 90-103]

Вопросы для самоконтроля:

- 1. Общее уравнение прямой.
- 2. Уравнение прямой с угловым коэффициентом.
- 3. Каноническое уравнение прямой
- 4. Уравнение прямой, проходящей через две данные точки.
- 5. Общее уравнение плоскости.
- 6. Уравнение плоскости, проходящей через три данные точки
- 7. Нормальное уравнение плоскости
- 8. Общее уравнение прямой в пространстве
- 9. Уравнение прямой, проходящей через две данные точки

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Решение контрольной работы по темам 5-7

Тема 3. Кривые и поверхности второго порядка План

- 1. Эллипс. Гипербола. Парабола.
- 2. Поверхность вращения, преобразование сжатия. Эллипсоид. Двуполостный и однополостный гиперболоиды. Метод сечений. Эллиптический и гиперболический параболоиды. Конус. Цилиндрические поверхности.
 - 3. Приведение общего уравнения второго порядка к каноническому виду. *Литература:* [2, с. 74-89, с. 104-115]

Вопросы для самоконтроля:

- 1. Понятие эллипса, гиперболы, параболы
- 2. Канонические уравнения эллипса, гиперболы, параболы
- 3. Понятие поверхности вращения
- 4. Общее уравнение линии второго порядка

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

2 семестр

Раздел 4. Интегральное исчисление функции одной переменной Тема 1. Неопределенный интеграл.

Ппан

- 1. Понятие первообразной.
- 2. Непосредственное интегрирование.
- 3. Замена переменной.
- 4. Метод интегрирования по частям.
- 5. Интегрирование рациональных функций.
- 6. Интегрирование некоторых иррациональных выражений.
- 7. Интегрирование тригонометрических и гиперболических функций.
- 8. Контрольная работа

Литература: [2, с. 226-255], [5, с. 275-285, с. 295-315], [1, с. 159-177]

Вопросы для самоконтроля:

- 1. Понятие первообразной.
- 2. Понятие неопределенного интеграла
- 3. Свойства неопределенного интеграла
- 4. Таблица первообразных
- 5. Методы интегрирования
- 6. Интегрирование рациональных функций.
- 7. Интегрирование некоторых иррациональных выражений.
- 8. Интегрирование тригонометрических и гиперболических функций

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 2. Определенный интеграл.

План

Понятие определенного интеграла.

- 1. Формула Ньютона Лейбница.
- 2. Вычисление определенных интегралов методом замены переменной под знаком интеграла.
 - 3. Формула интегрирования по частям.
- 4. Приложения определенного интеграла. Вычисление площади плоской фигуры. Вычисление объема тел.
 - 5. Контрольная работа

Литература: [2, с. 259-273, с. 279-298], [5, с. 316-357], [1, с. 177-209]

Вопросы для самоконтроля:

- 1. Формула Ньютона Лейбница
- 2. Вычисление определенных интегралов методом замены переменной под знаком интеграла.
 - 3. Формула интегрирования по частям
 - 4. Вычисление площади плоской фигуры
 - 5. Вычисление объема тел

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 3. Несобственные интегралы.

План

- 1. Несобственные интегралы 1-го рода
- 2. Несобственные интегралы 2-го рода

Литература: [2, с. 273-277], [5, с. 358-380], [1, с. 209-215]

Вопросы для самоконтроля:

- 1. Понятие несобственного интеграла 1-го рода
- 2. Понятие несобственного интеграла 2-го рода

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Раздел 5. Дифференциальные исчисления функций многих переменных Тема 1. Функции многих переменных.

План

- 1. Частные производные функций нескольких переменных
- 2. Дифференциалы функций многих переменных
- 3. Производная функции многих переменных по направлению
- 4. Частные производные и дифференциалы высших порядков *Литература:* [2, с. 304-316], [5, с. 222-259], [1, с. 275-299]

Вопросы для самоконтроля:

- 1. Понятие функции нескольких переменных
- 2. Частные производные функций нескольких переменных первого порядка.
- 3. Смешанные частные производные
- 4. Дифференциал функции многих переменных.
- 5. Производная функции многих переменных по направлению

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 2. Экстремумы функций многих переменных.

План

- 1. Определение экстремума.
- 2. Условный экстремум

Литература: [2, с. 320-324], [5, с. 557-571], [1, с. 301-304]

Вопросы для самоконтроля:

- 1. Экстремум функции многих переменных
- 2. Понятие стационарной точки
- 3. Необходимые условия экстремума.
- 4. Понятие условного экстремума функции многих переменных.
- 5. Метод неопределенных множителей Лагранжа

Задание для самостоятельной работы

Раздел 6. Теория вероятностей и математическая статистика Тема 1. Случайные события

План

- 1. Основные понятия и определения.
- 2. Алгебра событий.
- 3. Определение вероятности события.
- 4. Теорема сложения вероятностей.
- 5. Независимые события.
- 6. Условные вероятности.
- 7. Теорема умножения вероятностей.
- 8. Формулы полной вероятности и Байеса.
- 9. Повторение опытов (схема Бернулли).

Литература: [3, с. 17-63]

Вопросы для самоконтроля:

- 1. Перечислите виды случайных событий.
- 2. Дайте классическое определение вероятности
- 3. Сформулируйте теорему сложения вероятностей
- 4. Дайте определение условной вероятности
- 5. Сформулируйте теорему умножения вероятностей
- 6. Формула полной вероятности

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 2. Случайные величины

План

- 1. Основные понятия и определения.
- 2. Распределение дискретной и непрерывной случайных величин.
- 3. Числовые характеристики случайных величин.
- 4. Предельные теоремы.

Литература: [3, с. 64-69, с. 75-84, с. 85-100, с. 111-124]

Вопросы для самоконтроля:

- 1. Дайте определение дискретной случайной величины
- 2. Дайте определение дискретной случайной величины
- 3. Как вычислить математическое ожидание дискретной случайной величины?
- 4. Как вычислить дисперсию дискретной случайной величины?
- 5. Дайте определение функции распределения
- 6. Перечислите свойства функции распределения

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 3. Математическая статистика

План

- 1. Предмет и задачи математической статистики.
- 2. Выборочный метод.
- 3. Статистическое распределение выборки.
- 4. Статистические оценки параметров распределения.

Литература: [3, с. 187-236, с. 253-278]

Вопросы для самоконтроля:

- 1. Поясните понятия выборочная и генеральная совокупности
- 2. Дайте определение статистической функции распределения
- 3. Какая оценка является несмещенной?

- 4. Какая оценка является состоятельной?
- 5. Точечная оценка мат. ожидания случайной величины

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

3 семестр

Раздел 7. Дифференциальные уравнения Тема 1. Уравнения первого порядка: уравнения с разделяющимися переменными.

- 1. Уравнения с разделяющимися переменными.
- 2. Уравнения, приводящиеся к уравнениям с разделяющимися переменными. *Литература*: [4, с. 7-35]].

Вопросы для самоконтроля

- 1. Уравнения, приводящиеся к уравнениям с разделяющимися переменными.
- 2. Задача Коши.

Задание для самостоятельной работы

Изучить динамическую и геометрическую интерпретацию дифференциального уравнения и решение уравнений методом изоклин.

Тема 1. Уравнения первого порядка: линейные однородные и неоднородные уравнения.

- 1. Зависимость решения задачи Коши от параметров и начальных условий. Условие Липшипа.
 - 2. Метод вариации произвольной постоянной.

Литература: [4, с. 36-62]].

Вопросы для самоконтроля

1. Уравнение Бернулли. Уравнение Дарбу-Миндинга. Уравнение Риккати.

Задание для самостоятельной работы

Изучить методы интегрирования специального уравнения Риккати

Тема 1. Уравнения первого порядка: уравнения в полных дифференциалах.

- 1. Условие Эйлера.
- 2. Условия его существования интегрирующго множителя.

Литература: [4, с. 63-74].

Вопросы для самоконтроля

- 1. Интегрирующий множитель
- 2. Общее, частное и особое решение.

Задание для самостоятельной работы

Изучить вопрос зависимости решения задачи Коши от параметров и начальных условий.

Тема 2. Уравнения «n»-го порядка: линейные дифференциальные уравнения с постоянными коэффициентами.

- 1. Однородные уравнения.
- 2. Стркутура общего решения однородного уравнения в зависимости от корней характеристического уравнения.

Литература: [4, с. 93-116].

Вопросы для самоконтроля

- 1. Определитель Вронского.
- 2. Характеристическое уравнение и его корни.

3. Фундаментальная структура решений однородного уравнения.

Задание для самостоятельной работы

Изучить линейно зависимые и не зависимые решения.

Тема 2. Уравнения «*n*»-го порядка: неоднородные линейные уравнения с постоянными коэфициентами.

- 1. Структура общего решения неоднородного линейного уравнения.
- 2. Методы решения неоднородных линейных уравнений.

Литература: [4, с. 100-124].

Вопросы для самоконтроля

- 1. Метод Лагранжа (или метод вариации произвольной постоянной)
- 2. Метод неопределенных коэффициентов (метод подбора).

Задание для самостоятельной работы

Изучить операционный и операторный методы нахождения частного решения линейного неоднородного уравнения

Тема 2. Уравнения «п»-го порядка: уравнения с переменными коэфициентами.

- 1. Линейные дифференциальные уравнения с переменными коэффициентами.
- 2. Уравнения Эйлера.

Литература: [4, с. 124-133]].

Вопросы для самоконтроля

1. Методы сведения уравнения с переменными коэффициентами к уравнению с постоянными коэффициентами.

Задание для самостоятельной работы

Изучить метод решения уравнения Чебышева.

Тема 3. Нормальные системы уравнений: Неоднородные линейные уравнения с постоянными коэфициентами.

- 1. Свойства решений нормальной системы.
- 2. Линейные системы.
- 3. Методы решения однородных систем.

Литература: [4, с. 144-171]].

Вопросы для самоконтроля

- 1. Метод интегрируемых комбинаций
- 2. Метод исключения или метод сведения системы уравнений к одному более высокого порядка.

Задание для самостоятельной работы

Изучить решение систем методом Эйлера.

Тема 3. Нормальные системы уравнений: Неоднородные линейные уравнения с постоянными коэфициентами.

- 1. Общее решение неоднородных систем.
- 2. Метод вариации произвольных постоянных.
- 3. Линейные уравнения и системы с постоянными коэффициентами.

Литература: [4, с. 159-171].

Вопросы для самоконтроля

- 1. Первые интегралы нормальной системы.
- 2. Метод вариации произвольных постоянных.

Задание для самостоятельной работы

Изучить решение систем в симметрической форме.

Тема 3. Нормальные системы уравнений: динамические системы.

1. Автономная система и ее свойства.

Литература: [4, с. 144-158]].

Вопросы для самоконтроля

- 1. Уравнение траекторий
- 2. Закон движения материальной точки на фазовой плоскости.

Задание для самостоятельной работы

Изучить элементы качественной теории дифференциальных уравнений и построение фазовых портретов.

4 семестр Раздел 8. Теория рядов Тема 1. Теория числовых рядов

- 1. Нахождение суммы числового ряда
- 2. Исследование сходимости знакоположительных рядов
- 3. Исследование сходимости знакопеременных рядов

Литература: [2, с. 438-456], [5, с. 383-407], [1, с. 379-391]

Вопросы для самоконтроля:

- 1. Понятие числового ряда, понятие сходимости и расходимости ряда
- 2. Необходимое условие сходимости ряда
- 3. Достаточные признаки сходимости знакоположительных рядов.
- 4. Знакопеременные и знакочередующиеся ряды, признак сходимости Лейбница Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 2. Функциональные ряды План

- 1. Понятие степенного ряда
- 2. Исследование степенных рядов. Радиус и круг сходимости степенных рядов.
- 3. Разложение функции в ряды Тейлора и Маклорена.

Литература: [2, с. 457-471], [5, с. 425-430, с. 432-443], [1, с. 391-402]

Вопросы для самоконтроля:

- 1. Понятие степенного ряда
- 2. Радиус сходимости степенных рядов
- 3. Формулы рядов Тейлора и Маклорена

Задание для самостоятельной работы

Выполнение домашнего задания (решение задач по теме)

Тема 3. Ряды и интегралы Фурье. План

- 1. Представление периодической функции в виде ряда Фурье.
- 2. Представление непериодической функции в виде ряда Фурье.
- 3. Разложение в ряд Фурье только по синусам или только по косинусам.
- 4. Интеграл Фурье.

Литература: [2, с. 478-498], [1, с. 410-415]

Вопросы для самоконтроля:

- 1. Понятие ряда Фурье
- 2. Представление непериодической функции в виде ряда Фурье.

3. Интеграл Фурье. Задание для самостоятельной работы Выполнение домашнего задания (решение задач по теме)