Приложение 2 к РПД Аналитическая геометрия 09.03.02 Информационные системы и технологии Направленность (профиль) — Программно-аппаратные комплексы Форма обучения — заочная Год набора - 2019

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Общих дисциплин
2.	Направление подготовки	09.03.02 Информационные системы и технологии
3.	Направленность (профиль)	Программно-аппаратные комплексы
4.	Дисциплина (модуль)	Аналитическая геометрия
5.	Форма обучения	заочная
6.	Год набора	2019

2. Перечень компетенций

— способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности (ОПК-1).

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования компе-	Формируемая	и показатели оценивания Критери	Формы контроля			
тенции (разделы, темы дис- циплины)	компетенция	Знать: Уметь:		Владеть:	сформированности компетенций	
1. Элементы общей алгеб- ры					Тест, решение задач	
2. Теория определителей					Решение задач	
3. Алгебра матриц					Решение задач	
4. Системы линейных уравнений	ОПК-1	основы алгебры матриц; основные понятия теории множеств и общей алгебры; основы алгебры векторов; применение метода координат в описании геометрических объектов; классификацию алгебраических линий и поторуместов;	исследовать и решать системы линейных уравнений; использовать метод координат в пространствах малой размерности; применять матричные методы в решении алгебраических задач	навыками решения геометрических задач алгебраическими методами; навыками анализа и решения систем линейных уравнений	Решение задач, группо- вая дискуссия	
5. Алгебра векторов		верхностей.			Решение задач	
6. Метод координат					Решение задач	
7. Прямая и плоскость					Решение задач, тест	

Этап формирования компе-	Формируемая	Критери	Формы контроля			
тенции (разделы, темы дис- циплины)	компетенция	Знать:	Уметь:	Владеть:	сформированности компетенций	
8. Кривые и поверхности второго порядка					Решение задач, группо- вая дискуссия	

4. Критерии и шкалы оценивания

4.1. Тест

Процент правильных ответов	До 20	21-40	41-60	61-80	81-100
Количество баллов за решенный тест	1	2	3	4	5

4.2. Решение залач

- **5 баллов** выставляется, если обучающийся самостоятельно решил все рекомендованные задачи, правильно изложил все варианты их решения.
- **3 балла** выставляется, если обучающийся решил рекомендованные задачи, с незначительными подсказками со стороны преподавателя, правильно изложил все варианты решения, аргументировав их.
- **2 балла** выставляется, если обучающийся решил рекомендованные задачи, с существенной помощью со стороны преподавателя, изложил некоторые варианты их решения, аргументировав их.
- **1 балл** выставляется, если обучающийся решил рекомендованные задачи, с существенной помощью со стороны преподавателя, не изложив все варианты их решения и не аргументировав их.

4.3. Групповая дискуссия (устные обсуждения проблемы или ситуации)

Критерии оценивания	Баллы
 обучающийся ориентируется в проблеме обсуждения, грамотно высказывает и обосновывает свои суждения, владеет профессиональной терминологией, осознанно применяет теоретические знания, материал излагает логично, грамотно, без ошибок; при ответе обучающийся демонстрирует связь теории с практикой. 	5
 обучающийся грамотно излагает материал; ориентируется в проблеме обсуждения, владеет профессиональной терминологией, осознанно применяет теоретические знания, но содержание и форма ответа имеют отдельные неточности; ответ правильный, полный, с незначительными неточностями или недостаточно полный. 	3
 обучающийся излагает материал неполно, непоследовательно, допускает неточности в определении понятий, не может доказательно обосновать свои суждения; обнаруживается недостаточно глубокое понимание изученного материала. 	0

4.4. Выполнение задания на составление глоссария

	Критерии оценки	Количество баллов
1	аккуратность и грамотность изложения, работа соответствует по оформлению всем требованиям	2
2	полнота исследования темы, содержание глоссария соответствует заданной теме	3
	ИТОГО:	5 баллов

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы.

5.1. Типовое тестовое задание

- 1. Аргумент комплексного числа 2+2i равен:
 - A: $\pi/4$
 - B: $3\pi/4$
 - $C: \pi/6$
 - B: $\pi/3$
- 2. Точкой пересечения плоскости: 3x 2y + z 6 = 0 с осью OX является:
 - A: (1; 0; 3)
 - B: (2; 0; 0)
 - C: (-2; 0; 0)
 - D: (3; 0; 0)
- 3. Точка С(-5; -2) середина отрезка АВ. Тогда координату точек А и В могут быть равны:
 - A: A(-8; -2), B(-2; -2)
 - B: A(-8; -3), B(-2; -1)
 - C: A(-8; 2), B(-2; 2)
 - D: A(10; -5), B(-20; 1)
- 4. Матрица $A = \begin{pmatrix} 3 \lambda & 1 \\ 1 & 3 \end{pmatrix}$ вырождена при λ , равном:
 - A: -8/3
 - B: 3
 - C: 8/3
 - D: 2

Ключи: 1-С; 2-В; 3-А,В; 4-С

5.2. Примеры решения задач:

1. Вычислить определитель матрицы

$$\begin{pmatrix} 3 & 4-5 \\ 8 & 7-2 \\ 2-1 & 8 \end{pmatrix} = \mathbf{A}$$

Раскладываем определитель по первому столбцу:

$$Det \mathbf{A} = 3 \times \begin{vmatrix} 7 & -2 \\ -1 & 8 \end{vmatrix} - 8 \times \begin{vmatrix} 4 - 5 \\ -1 & 8 \end{vmatrix} + 2 \times \begin{vmatrix} 4 - 5 \\ 7 - 2 \end{vmatrix} =$$

 $=3\times[7\times8-(-1)\times(-2)]-8\times[4\times8-(-1)\times(-5)]+2\times[4\times(-2)-7\times(-5)]=3\times(56-2)-8\times(32-5)+2\times(-8+35)=$ $=3\times54-8\times27+2\times27=162-216+54=216-216=0$

Omвет: Det A = 0

2. Решить систему уравнений:

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 5$$

$$2x_1 + x_2 + 2x_3 + 3x_4 = 1$$

$$3x_1 + 2x_2 + x_3 + 2x_4 = 1$$

$$4x_1 + 3x_2 + 2x_3 + x_4 = -5$$

Находим определитель матрицы данной системы уравнений. Выполняя элементарные операции со столбцами определителя, произведем очевидные упрощения:

$$\Delta = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 3 & 2 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 5 \\ 2 & 1 & 2 & 5 \\ 3 & 2 & 1 & 5 \\ 4 & 3 & 2 & 5 \end{vmatrix} = 5 \begin{vmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & 2 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 \end{vmatrix} = 5 \begin{vmatrix} 1 & 2 & 4 & 1 \\ 2 & 1 & 4 & 1 \\ 3 & 2 & 4 & 1 \\ 4 & 3 & 6 & 1 \end{vmatrix} = 10 \begin{vmatrix} 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 2 & 0 & 1 \\ 4 & 3 & 0 & 1 \end{vmatrix} = 10 \begin{vmatrix} 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 2 & 0 & 1 \\ 4 & 3 & 0 & 1 \end{vmatrix} = 10 \begin{vmatrix} 1 & 2 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 3 & 3 & 0 & 1 \\ 4 & 4 & 0 & 1 \end{vmatrix} = 10 \begin{vmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 4 & 0 & 0 & 1 \end{vmatrix} = 20 \begin{vmatrix} 1 & 1 & 0 & 1 \\ 3 & 0 & 0 & 1 \\ 4 & 0 & 0 & 1 \end{vmatrix} = -20$$

Т.к. определитель отличен от 0, можно воспользоваться методом Крамера.

$$x_i = \Delta_{xi}/\Delta$$
; $i = 1,2,3,4$

Вычисляем определители Δ_{xi} для неизвестных, получающиеся заменой соответствующих столбцов на столбец правой части:

$$\Delta_{x1} = \begin{vmatrix} 5 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{vmatrix} = 40,$$

$$\Delta_{x2} = \begin{vmatrix} 1 & 5 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \\ 4 & -5 & 2 & 1 \end{vmatrix} = -40$$

$$\Delta_{x3} = \begin{vmatrix} 1 & 2 & 5 & 4 \\ 2 & 1 & 1 & 3 \\ 3 & 2 & 1 & 2 \\ 4 & 3 - 5 & 1 \end{vmatrix} = 60$$

$$\Delta_{x4} = \begin{vmatrix} 1 & 2 & 3 & 5 \\ 2 & 1 & 2 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & -5 \end{vmatrix} = -60$$

используя эти определители, находим: $x_1 = \Delta_{x_1}/\Delta = -2$, $x_2 = \Delta_{x_2}/\Delta = 2$, $x_3 = -3$, $x_4 = 3$.

Решение системы уравнений можно записать в виде $(-2, 2, -3, 3)^t$

Omsem:
$$x_1 = -2$$
, $x_2 = 2$, $x_3 = -3$, $x_4 = 3$.

3. Привести уравнение $4xy+3y^2+16x+12y-36=0$ к каноническому виду, установить тип уравнения, геометрический образ, определяемый уравнением, найти каноническую систему координат и построить линию второго порядка.

Рассчитываем инварианты линии

$$I_2 = \begin{vmatrix} a_{11}a_{12} \\ a_{21}a_{22} \end{vmatrix} = \begin{vmatrix} 0 & 2 \\ 2 & 3 \end{vmatrix} = -4 < 0$$

$$I_3 = \begin{vmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{vmatrix} = \begin{vmatrix} 0 & 2 & 8 \\ 2 & 3 & 6 \\ 8 & 6 & 36 \end{vmatrix} = 144 \neq 0.$$

Следовательно, линия - гипербола.

$$I_1 = a_{11} + a_{22} = 0 + 3 = 3$$

Характеристическое уравнение:

$$\lambda^2 - 3\lambda - 4 = 0$$

имеет корни $\lambda_1 = 4$, $\lambda_2 = -1$.

Преобразованное уравнение линии:

$$\lambda_1 X^2 + \lambda_2 Y^2 + K_3 / I_2 = 0$$

 $4X^2 - Y^2 - 144/4 = 0$

приводится к каноническому типу:

$$X^2/9 - Y^2/36 = 1$$

из которого следует a = 3, b = 6

Найдем координаты центра гиперболы:

$$a_{11}x_0 + a_{12}y_0 + a_{13} = 0$$

$$a_{21}x_0 + a_{22}y_0 + a_{23} = 0$$

$$0 x_0 + 2 y_0 + 8 = 0$$

$$2 x_0 + 3 y_0 + 6 = 0$$

откуда $x_0 = 3$, $y_0 = -4$. Центр имеет координаты $O' = \{3,-4\}$

Угловой коэффициент оси О'Х

$$k = \frac{\lambda_1 - a_{11}}{a_{12}}$$
 при $a_{12} \neq 0$ $k = \frac{4 - 0}{2} = 2$;

Уравнение оси O'X: y = 2x + p; точка O' лежит на оси, отсюда находим p:

$$y_0 = 2x_0 + p$$

$$-4 = 2 \cdot 3 + p$$
; $p = -10$.

Тогда уравнение действительной оси

$$2x - y - 10 = 0$$

Уравнение оси O'Y: 2y = -x + t; t = -5; x + 2y + 5 = 0

Тангенс угла наклона действительной оси гиперболы к оси ОX tgφ=2, тогда

$$\cos \varphi = 1/(5)^{1/2}, \sin \varphi = 2/(5)^{1/2}$$

Формулы преобразования координат:

Х,Ү - канонические координаты

$$x = \frac{X - 2Y}{\sqrt{5}} + 3$$
, $y = \frac{2X + Y}{\sqrt{5}} - 4$

По каноническому уравнению гиперболы $X^2/9 - Y^2/36 = 1$ можно найти ее параметры

$$c = \sqrt{a^2 + b^2} = 3\sqrt{5}$$

Эксцентриситет $e = \frac{c}{1} = \sqrt{5}$

Координаты фокусов в канонической системе $F_1(-c;0); F_2(c;0)$ $F_1(-3(5)^{1/2};0); F_2(3(5)^{1/2};0);$

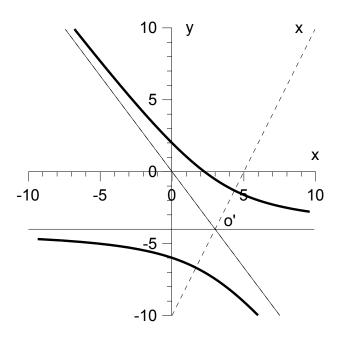
$$F_1(-3(5)^{1/2}; 0); F_2(3(5)^{1/2}; 0);$$

В исходной системе: $F_1(0; -10)$, $F_2(6; 2)$

Уравнения директрис в канонической системе

$$X = \pm \frac{a}{e}; \quad X = \pm \frac{3}{\sqrt{5}}$$

В исходной системе x + 2y + 2 = 0; x + 2y + 8 = 0


Уравнения асимптот в канонической системе

$$Y = \pm \frac{b}{a}X$$
$$Y = \pm 2X$$

Уравнения асимптот в исходной системе

$$Y + 4 = 0$$

 $4x + 3y = 0$

Рисунок к задаче 4: гипербола - жирные линии, асимптоты - тонкие линии, ось О'Х пунктир.

Примеры вопросов к групповой дискуссии Тема. Кривые и поверхности второго порядка.

План:

- 1. Какая фигура называется эллипсом?
- Запишите каноническое уравнение эллипса. 2.
- 3. Что называют директрисами эллипса?
- 4. Как записывается уравнение эллипса в полярной системе координат?
- 5. В чем состоит геометрический смысл коэффициентов в уравнении эллипса?

- 6. Запишите параметрическое уравнение эллипса в канонической системе координат.
- 7. Изобразить эллипс: $x^2/4 + y^2 = 1$ в канонической системе координат. Найти полуоси, фокусное расстояние, эксцентриситет, коэффициент сжатия, фокальный параметр, уравнения директрис.
- 8. Какая фигура называется гиперболой?
- 9. Что такое фокус, эксцентриситет гиперболы?
- 10. Запишите уравнение гиперболы в канонической системе координат.
- 11. Что называют директрисами гиперболы?
- 12. Как записывается уравнение гиперболы в полярной системе координат?
- 13. В чем состоит геометрический смысл коэффициентов в уравнении гиперболы?
- 14. Запишите параметрическое уравнение гиперболы в канонической системе координат.
- 15. Изобразить гиперболу: $x^2/4 y^2/9 = 1$ в канонической системе координат. Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.
- 16. Какая фигура называется параболой?
- 17. Что такое фокус, эксцентриситет параболы?
- 18. Запишите уравнение параболы в канонической системе координат.
- 19. Что называют директрисами гиперболы?
- 20. Как записывается уравнение гиперболы в полярной системе координат?
- 21. В чем состоит геометрический смысл коэффициентов в уравнении параболы?
- 22. Запишите параметрическое уравнение параболы в канонической системе координат.
- 23. Изобразить параболу: $y^2 = 2x$ в канонической системе координат. Найти фокальный параметр, координаты фокуса и уравнение директрис.
- 24. Какие есть общие свойства у эллипса, гиперболы и параболы?
- 25. Какая фигура называется эллипсоидом? Запишите ее уравнение в канонической СК.
- 26. Какая фигура называется эллипсоидом вращения? Запишите ее уравнение в канонической СК.
- 27. Какая фигура называется однополостным гиперболоидом? Запишите ее уравнение в канонической СК.
- 28. Какая фигура называется двуполостным гиперболоидом? Запишите ее уравнение в канонической СК.
- 29. Какая фигура называется гиперболоидом вращения? Запишите ее уравнение в канонической СК.
- 30. Какая фигура называется конусом? Запишите ее уравнение в канонической СК.
- 31. Какие плоские фигуры получаются в результате сечения конуса плоскостью?
- 32. Какая фигура называется конусом эллиптическим параболоидом? Запишите ее уравнение в канонической СК.
- 33. Какая фигура называется конусом гиперболическим параболоидом? Запишите ее уравнение в канонической СК.

5.4. Перечень вопросов к экзамену

- 1. Множества, операции и отношения над множествами.
- 2. Функции, отношения эквивалентности, отношения частичного порядка.
- 3. Группа. Абелева, циклическая группа. Изоморфизм, автоморфизм.
- 4. Кольцо, делители нуля.
- 5. Тело, поле.
- 6. Комплексные числа, действия над ними. Тригонометрическая форма, сопряженные числа.
- 7. Комплексные числа. Формула Муавра. Извлечение квадратного корня, корни высших степеней, корни из единицы, первообразные корни.

- 8. Многочлены одной переменной, операции над ними. Алгоритм деления с остатком. Делимость многочленов, ее свойства.
- 9. Наибольший общий делитель, алгоритм Евклида. Метод Горнера.
- 10. Основная теорема алгебры (без док-ва).
- 11. Формулы Виета. Комплексные корни уравнения с действительными коэффициентами.
- 12. Определители второго и третьего порядка. Определители n -го порядка. Перестановки, инверсии. Транспозиции. Три свойства перестановок.
- 13. Свойства определителей: определитель транспонированной матрицы, перемена местами строк в определителе, определитель матрицы с одинаковыми строками.
- 14. Свойства определителей: разложение определителя по строке.
- 15. Свойства определителей: произведение элементов одной строки на алгебраические дополнения другой строки, умножение строки на число, две пропорциональные строки.
- 16. Разложение определителя в сумму двух, прибавление к элементам одной строки элементов другой строки, умноженных на одно и то же число.
- 17. Определитель Вандермонда. Определитель треугольной матрицы.
- 18. Теорема Лапласа (без доказательства).
- 19. Линейное преобразование, умножение линейных преобразований. Произведение матриц, матричная запись линейного преобразования и системы линейных уравнений.
- 20. Ассоциативность умножения матриц, транспонирование произведения матриц, умножение на единичную матрицу.
- 21. Сложение, вычитание матриц, произведение матрицы на число. Законы дистрибутивности, ассоциативность умножения на число, скалярная матрица.
- 22. Линейная комбинация матриц, многочлен от матрицы. Сложение и умножение многочленов от матриц. Определитель произведения матриц.
- 23. Обратная, неособенная, взаимная матрица. Условие существования, вычисление обратной матрицы. Обратная матрица для произведения матриц. Решение систем линейных уравнений с помощью обратной матрицы. Вычисление обратной матрицы с помощью элементарных преобразований.
- 24. Собственные числа и собственные столбцы матрицы, характеристический многочлен.
- 25. Системы линейных уравнений, их типы. Теорема Крамера. Ранг матрицы. Элементарные преобразования матриц. Вычисление ранга с помощью элементарных преобразований.
- 26. Метод Гаусса. Элементарные преобразования систем линейных уравнений.
- 27. Теорема Кронекера-Капелли. Теорема о числе решений системы линейных уравнений.
- 28. Однородные системы линейных уравнений. Линейная комбинация решений, фундаментальная система решений.
- 29. Теоремы о структуре общего решения однородной и неоднородной системы линейных уравнений.
- 30. Геометрический вектор, модуль вектора, коллинеарные и компланарные вектора. Свободные, скользящие и связанные вектора. Сумма, разность векторов, произведение вектора на число. Свойства этих операций.
- 31. Ортогональная проекция точки, вектора на прямую и ось. Угол между векторами. Вычисление ортогональной проекции. Ортогональная проекция суммы векторов и произведения вектора на число.
- 32. Линейная комбинация векторов, линейно независимые вектора. Условия линейной зависимости векторов. Базис, разложение вектора по базису, координаты вектора. Изменение координат при сложении векторов и умножении вектора на число, коор-

- динаты коллинеарных векторов. Ортогональный и ортонормированный базис, направляющие косинусы.
- 33. Скалярное произведение векторов, ортогональные вектора, скалярный квадрат. Свойства скалярного произведения, вычисление скалярного произведения через координаты вектора.
- 34. Векторное произведение векторов, правая тройка векторов. Свойства векторного произведения. Вычисление векторного произведения в координатах.
- 35. Смешанное произведение векторов. Геометрический смысл смешанного произведения. Свойства смешанного произведения. Вычисление смешанного произведения в координатах.
- 36. Декартова система координат. Преобразование координат точки при замене системы координат. Поворот системы координат на плоскости. Нахождение координат вектора, длины отрезка, деление отрезка в заданном отношении.
- 37. Уравнение множества, геометрический образ уравнения. Многочлен многих переменных, алгебраическая поверхность, алгебраическая кривая, их порядок. Способы задания кривой в пространстве.
- 38. Полярная, цилиндрическая, сферическая системы координат.
- 39. Аналитическая геометрия на плоскости и в пространстве. Прямая на плоскости и алгебраическая кривая первого порядка. Общее уравнение прямой. Уравнение прямой, проходящей через данную точку перпендикулярно вектору.
- 40. Уравнение прямой с угловым коэффициентом. Параметрическое, векторное, каноническое уравнение прямой. Уравнение прямой, проходящей через две данные точки.
- 41. Уравнение прямой в отрезках. Нормальное уравнение прямой. Условия параллельности и перпендикулярности прямых на плоскости, угол между прямыми, расстояние от точки до прямой.
- 42. Плоскость в пространстве и алгебраическая поверхность первого порядка. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку, перпендикулярно вектору.
- 43. Векторное, параметрическое уравнение плоскости. Уравнение плоскости, проходящей через три данные точки. Уравнение плоскости в отрезках. Нормальное уравнение плоскости.
- 44. Общее уравнение прямой в пространстве. Векторное, параметрическое, каноническое уравнение прямой. Уравнение прямой, проходящей через две данные точки. Угол между плоскостями, между прямыми в пространстве.
- 45. Взаимное расположение прямых в пространстве (канонические и общие уравнения). Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью. Расстояние от точки до плоскости, от точки до прямой, между прямыми, между прямой и плоскостью.
- 46. Эллипс. Гипербола. Парабола.
- 47. Поверхность вращения, преобразование сжатия. Эллипсоид. Двуполостный и однополостный гиперболоиды. Метод сечений. Эллиптический и гиперболический параболоиды. Конус. Цилиндрические поверхности.
- 48. Приведение общего уравнения второго порядка к каноническому виду.

ТЕХНОЛОГИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

09.03.02 Информационные системы и технологии Направленность (профиль) «Программно-аппаратные комплексы»

(код, направление, профиль)

ТЕХНОЛОГИЧЕСКАЯ КАРТА

Шифр д	Шифр дисциплины по РУП Б1.О.15												
Дисциплина Аналитическая геометрия													
Курс 1 семестр 1													
Кафедр	Кафедра Общих дисциплин												
Ф.И.О.	Ф.И.О. преподавателя, звание, Сахаров Ярослав Алексеевич, канд. физмат. наук, до-								наук, до-				
должно	СТЬ				це	ент кафо	едрь	ы общих	дисі	циплин			
Общ. тру	Общ. трудоемкость час/ЗЕТ 180/5 Кол-во семестров 1 Форма контроля Экзамен								мен				
ЛК общ /тек сем 4/4 ПР/СМобии /				тек се	_M 6/0	6	ЛБоби /тек	сем	-/-	CPC ofin /	гек сем	161/161	

Компетенции обучающегося, формируемые в результате освоения дисциплины:

— способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности (ОПК-1).

Код формируе- мой компетен- ции	Содержание задания	Количество мероприятий	Максимальное количество баллов	Срок предоставле- ния							
		Вводный блок									
	Не предусмотрен										
		Основной блок									
ОПК-1	Решение бланочных тестов	2	10	В межсессионный период							
ОПК-1	Групповая дискуссия	2	10	В течение семестра по расписанию занятий							
ОПК-1	Решение комплекса задач	8	40	В межсессионный период							
		Всего:	60								
ОПК-1	Экзамен Вопрос 1 Вопрос 2		20 20	По расписанию сес- сии							
		Всего:	40								
		Итого:	100								
ОПК-1	Подготовка глоссария		5	по согласованию с							
		Всего:	5	преподавателем							

Шкала оценивания в рамках балльно-рейтинговой системы МАГУ: $\langle 2 \rangle$ - 60 баллов и менее, $\langle 3 \rangle$ - 61-80 баллов, $\langle 4 \rangle$ - 81-90 баллов, $\langle 5 \rangle$ - 91-100 баллов.