Приложение 2 к РПД Осушение карьерных полей Специальность- 21.05.04 Горное дело специализация №3 Открытые горные работы Форма обучения — заочная Год набора - 2017

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Горного дела, наук о Земле и природообустройства
2.	Специальность	21.05.04 Горное дело
3.	Специализация	№3 Открытые горные работы
4.	Дисциплина (модуль)	Осушение карьерных полей
5.	Форма обучения	заочная
6.	Год набора	2017

2. Перечень компетенций

- владеть навыками анализа горно-геологических условий при эксплуатационной разведке и добыче твердых полезных ископаемых, а также при строительстве и эксплуатации подземных объектов (ПК-1);
 - способность проектировать природоохранную деятельность (ПСК-3.5).

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования	Формируемая	Критерии и п	оказатели оценивания к	Критерии и показатели оценивания компетенций			
компетенции (разделы, темы	компетенция	Знать:	Уметь:	Владеть:	сформированност		
дисциплины)					и компетенций		
1. Введение. Общие сведения.	ПК-1, ПСК-3.5	о положении воды в	дать определение	основными терминами:	Практическая		
		земной коре. О зоне	грунтовым и напорным	скважность	работа.		
		аэрации и зоне	водам, основным	(пористость,	Устный опрос на		
		насыщения. Водоносные	элементам водоносного	трещиноватость).	понимание		
		горизонты, водоупорные	горизонта или	Информацией о водных	терминов с		
		слои. Водоносный	комплекса. Границы,	свойствах горных пород	тестированием.		
		комплекс. Свойства и	область	:(водопроницаемость,	Групповая		
		показатели порово-	распространения,	влагоемкость	дискуссия		
		трещинного пространства	область питания,	гравитационная			
		горных пород.	область разгрузки	водоотдача, упругая			
			стока.	водоотдача,			
				коэффициент			
	FIG. 1. FIGURE 2. F	1		водообильности).			
2. Факторы, влияющие на	ПК-1, ПСК-3.5	факторы обводнения	определять зависимость	основными терминами			
обводненность месторождений.		месторождений полезных	величины воронки и определениями.				
		ископаемых;	депрессии и скорости её				
		естественные	формирования от				
		(природные) и	характера запасов				
		искусственные факторы. Обводнение	подземных вод, близости области				
		месторождений за счёт статических запасов и	питания,				
		статических запасов и притока со стороны	водопроницаемости и пьезопроводности				
		области питания.	пород, мощности и				
		ооласти питания.	напора водоносных				
			горизонтов, величины				
			понижения, количества				
			откачиваемой воды и				
			расположения				
			дренажных устройств.				
3. Гидрогеологические	ПК-1, ПСК-3.5	классификацию	выделять типы	данными о величине	Практическая		
классификации и типы		месторождений полезных	обводнённых	водопритоков,	работа.		
обводненных месторождений.		ископаемых по степени	месторождений (П.П.	условиям борьбы с	Решение задач		

		обводнённости (по С.В.	Климентов) по степени	подземными водами,	
		Троянскому).	сложности геолого-	условиям вскрытия и	
		Геотектонический	гидрогеологических	эксплуатации полезного	
		фактор, наличие	условий	ископаемого.	
		многолетней мерзлоты и	месторождений.		
		близость водотоков.	1		
		Классификацию Д.И.			
		Щеголева в зависимости			
		от характера и			
		водообильности пород,			
		слагающих кровлю и			
		почву полезного			
		ископаемого.			
4. Режим водопритоков в горные	ПК-1, ПСК-3.5	зависимость режима	Объяснить движение	Информацией о типах	Практическая
выработки. Гидрогеологические		водопритоков в горные	подземных вод дать	режимов подземных	работа.
классификации и типы		выработки от типа и	опредение, что такое	вод и водопритоков в	Решение задач.
обводненных месторождений.		размера запасов	гидроизогипсы и	горные выработки,	- v— v vu/,u
real real real real real real real real		подземных вод, степени	гидроизопьезы.	движение подземных	
		взаимосвязи между	Понятие о потоках	вод к искусственным	
		смежными водоносными	подземных вод. Законы	дренам.	
		горизонтами и связи их с	движения. Основные	Tr	
		поверхностными водами,	фильтрационные		
		от интенсивности работы	параметры.		
		дренажных устройств,			
		системы разработки.			
5. Определение водопритоков в	ПК-1, ПСК-3.5	стадии проектирования	типизировать притоки	опеделение терминов:	Практическая
разрезную траншею и карьер	,	осушения карьера или	по условиям дренажа	депрессионная воронка,	работа.
		шахты. Дренаж,	месторождений	динамический уровень,	Решение задач.
		дренажные системы,	полезных ископаемых,	радиус влияния	
		требования к системам	разрабатываемых	выработки,	
		дренажа карьеров.	открытым способом	взаимодействие	
		Расчёт притока в	(месторождения группы	вертикальных дрен.	
		ограждающую дрену и	А1, А2, Б, В).	Статические запасы и	
		карьер.		естественные ресурсы	
				подземных вод.	
6. Способы и схемы осушения	ПК-1, ПСК-3.5	категории сложности	рассчитывать осушение	сведениями о	Практическая
месторождений.		условий осушения:	поля карьера путём	стабильных и	работа.
		простые, средней	перехвата	скользящих схемах	Контрольная
		сложности, сложные и	поверхностных и	осушения карьерного	работа №1

		OHOM OHOMMIA	пономину род	поля по О.В. Скиргелло.	
		очень сложные.	подземных вод	поля по О.В. Скиргелло.	
		Опережающее и	дренажными		
		параллельное, или	сооружениями.		
		эксплуатационное,	Открытый (пассивный)		
		осушение.	водоотлив.		
7. Поверхностные способы	ПК-1, ПСК-3.5	глубокий дренаж	применять	сведениями о	Практическая
осушения.		водопонижающими или	поверхностные способы	технических средствах	работа.
		поглощающими	осушения. Делать	осушения и защиты	Контрольная
		скважинами, ярусное	расчёты установок	карьеров от подземных	работа №2
		осушение,	водопонижающих	вод.	
		горизонтальный дренаж	скважин. Использовать		
		неглубокого заложения,	средства глубинного		
		горизонтальный дренаж в	дренажа (подземная		
		откосах карьера. Средства	система осушения;		
		открытого дренажа.	система		
		Прибортовой дренаж.	водопонижающих		
		Защита карьеров от	скважин;		
		подземных вод -	дополнительные		
		водонепроницаемые	средства осушения:		
		завесы (барраж). Схемы	самоизливающие		
		осушения (схемы	скважины,		
		расположения дренажных	поглощающие		
		устройств в плане):	скважины;		
		линейная схема –	иглофильтровые		
		поверхностный	установки).		
		горизонтальный дренаж	,		
		(кольцевой, контурный);			
		систематический дренаж.			
8. Осушение месторождений	ПК-1, ПСК-3.5	общую характеристика	производить расчёты	способами определения	
подземным способом	,	подземного способа	притока воды в	общего притока по	
,,		осушения, общую	вертикальный ствол	коэффициенту	
		характеристика	шахты и в дренажный	водообильности	
		комбинированного	штрек. Использовать	известного	
		способа осущения.	забивные фильтры и	аналогичного карьера.	
		Дренажные шурфы и	аэрирующие скважины,	Определение общего	
		скважины. Схема	забивные вакуум-	притока по водному	
		осушения карьера	фильтры и сквозные	балансу.	
		дренажными шурфами и	фильтры, понижающие		
		штреками.	колодцы и забивные		
	I	miperumi.	колодцы и заоныные	l	I

			фильтры в почву. Вести		
			расчёты схем		
			дренажной установки		
			при подземном		
			осушении.		
9. Осушение внутренних	ПК-1, ПСК-3.5	схему осушения	оценивать влияние	навыками применения	Практическая
отвалов	1110 1, 11010 3.3	основания внутренних	свойств горных пород и	стандартного и	работа.
o i builo b		отвалов с помощью	строительных	специализированного	Доклад с
		дренажных канав и	материалов.	программного	презентацией.
		водопонижающих	Murephanos.	обеспечения при	презептициене
		скважин.		проектировании и	
				эксплуатации карьеров	
10. Защита карьера от	ПК-1, ПСК-3.5	закономерности	разрабатывать	информацией о	Практическая
поверхностных вод.		изменения свойств	мероприятия по защите	возможности осушения	работа.
F		горных пород и породных	карьера от	поля карьера путём	Реферат
		массивов под	поверхностных вод:	отвода рек с территории	- · · · · · · · ·
		воздействием физических	ограждение карьера от	карьера.	
		полей.	поверхностных вод,	1 1	
			стекающих с		
			водосборной площади.		
11. Отвод откачиваемых вод и	ПК-1, ПСК-3.5	определение суммарного	организовать отвод	способом измерения	Практическая
их учет.		притока по	откачиваемых вод при	количества	работа.
		производительности и	осушении	откачиваемой воды при	Групповая
		продолжительности	месторождения по	помощи водослива.	дискуссия
		работы насосов.	канавам,		
			прокладываемым по		
			направлению уклона		
			местности.		

4. Критерии и шкалы оценивания

4.1 Устный опрос на понимание терминов

Процент правильных ответов	До50	До 60	61-80	81-100
Количество баллов за ответы	0	1	2	3

4.2 Доклад с презентацией

Баллы	Характеристики выступленияобучающегося
	 студент глубоко и всесторонне усвоил проблему;
	— уверенно, логично, последовательно и грамотно его излагает;
	— опираясь на знания основной и дополнительной литературы, тесно
10	привязывает усвоенные научные положения с практической
10	деятельностью;
	— умело обосновывает и аргументирует выдвигаемые им идеи;
	 делает выводы и обобщения;
	 свободно владеет понятиями
	— студент твердо усвоил тему, грамотно и по существу излагает ее,
	опираясь на знания основной литературы;
	 не допускает существенных неточностей;
5	 увязывает усвоенные знания с практической деятельностью;
	— аргументирует научные положения;
	 делает выводы и обобщения;
	 владеет системой основных понятий
	— тема раскрыта недостаточно четко и полно, то есть студент освоил
	проблему, по существу излагает ее, опираясь на знания только
	основной литературы;
3	— допускает несущественные ошибки и неточности;
	 испытывает затруднения в практическом применении знаний;
	 слабо аргументирует научные положения;
	— затрудняется в формулировании выводов и обобщений;
	— частично владеет системой понятий
	— студент не усвоил значительной части проблемы;
	— допускает существенные ошибки и неточности при рассмотрении
	ee;
0	 испытывает трудности в практическом применении знаний;
	— не может аргументировать научные положения;
	 не формулирует выводов и обобщений;
	 не владеет понятийным аппаратом

4.3. Решение задач

- **5** балла выставляется, если студент решил все рекомендованные задачи, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- **3** балла выставляется, если студент выполнил не менее 80% рекомендованных задач, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- **1** балл выставляется, если студент выполнил не менее 60% рекомендованных задач, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).

0 баллов выставляется, если студент выполнил не менее 50% рекомендованных задач, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).

4.4. Реферат

Баллы	Характеристики ответа студента					
	- студент глубоко и всесторонне усвоил проблему;					
	- опираясь на знания основной и дополнительной литературы, тесно					
10	привязывает усвоенные научные положения с практической деятельностью;					
10	- умело обосновывает и аргументирует выдвигаемые им идеи;					
	- делает выводы и обобщения;					
	- свободно владеет понятиями.					
	- студент твердо усвоил тему, грамотно и по существу излагает ее, опираясь					
	на знания основной литературы;					
5	- не допускает существенных неточностей;					
3	- увязывает усвоенные знания с практической деятельностью;					
	- аргументирует научные положения;					
	- делает выводы и обобщения;					
	- владеет системой основных понятий.					
	- тема раскрыта недостаточно четко и полно, то есть студент освоил					
	проблему, по существу излагает ее, опираясь на знания только основной					
	литературы;					
3	- допускает несущественные ошибки и неточности;					
3	- испытывает затруднения в практическом применении знаний;					
	- слабо аргументирует научные положения;					
	- затрудняется в формулировании выводов и обобщений;					
	- частично владеет системой понятий.					
	- студент не усвоил значительной части проблемы;					
	- допускает существенные ошибки и неточности при рассмотрении ее;					
0	- испытывает трудности в практическом применении знаний;					
U	- не может аргументировать научные положения;					
	- не формулирует выводов и обобщений;					
	- не владеет понятийным аппаратом.					

4.5 Контрольная работа

Баллы	Содержание работы				
10	- содержание работы соответствует выданному заданию;				
	- контрольное задание выполнено уверенно, логично, последовательно				
	и грамотно;				
	- все расчеты сделаны без ошибок;				
	- выполненная графика соответствует стандартным требованиям;				
	- выводы и обобщения аргументированы;				
	- ссылки на литературу соответствуют библиографическим				
	требованиям.				
5	- основные требования к работе выполнены, но при этом допущены				
	некоторые недочёты;				
	- имеются неточности в стиле изложения материала;				
	- имеются упущения в оформлении графики.				

3	- работа выполнена на 50%;			
	- имеются существенные отступления от требований к оформлению			
	графических материалов и текста;			
	- допущены ошибки в расчетах;			
	- отсутствует логическая последовательность в выводах;			
	- отсутствуют ссылки на литературные источники.			
0	- обнаруживается полное непонимание сути выполняемой работы;			
	- имеется большое количество грубейших ошибок;			
	- отсутствуют практические навыки и теоретические знания предмета.			

4.6 Выполнение задания по составлению глоссария и опорного конспекта

Критерии оценки	Количество баллов
1 Содержание глоссария соответствует темам изучаемой	E
дисциплины. Термины расположены в алфавитном порядке.	3
2. Опорный конспект отвечает предъявляемым требованиям и	
включает все пройденные темы. Грамотно изложен текст,	5
аккуратно оформлены все иллюстрации и рисунки к тексту.	
Итого:	10 баллов

4.7 Групповая дискуссия

Процент правильных ответов	До 50	>50
Количество баллов за ответы	0	1

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1 Типовое тестовое задание на понимание терминов

В целях обучения студентов, усвоения и контроля полученных знаний используются тестовые базы.

- 1. Ламинарное движение.
- 2. Турбулентное движение.
- 3. Безнапорная фильтрация.
- 4. Кривая депрессии.
- 5. Глубина потока.
- 6.. Пьезометрическая кривая.
- 7. Коэффициент скорости фильтрации.
- 8. Изотропность пласта.
- 9. Опытная откачка из скважин.
- 10. Опытные наливы воды в скважины.
- 11. Налив воды в шурфы.
- 12. Фильтрационный расход из водохранилища.
- 13. Водопроницаемость.
- 14. Влагоёмкость.
- 15. Водоотдача.
- 16. Поровая вода.
- 17. Суффозия.

- 18. Конституционная вода.
- 19. Транспирация.
- 20. Водоносный комплекс.

А – подземные воды, приуроченные к водоносным породам какого-либо стратиграфического подразделения.

Б – особый вид испарения в виде возникновения парообразной влаги в результате жизнедеятельности растений.

В – вода, входящая в кристаллическую решетку минералов.

 Γ – механическое действие движущейся воды на породы, проявляющееся в выносе мелких частиц из рыхлых несвязных пород.

Д – жидкая фаза воды, заполняющая поры породы.

Е – свойство пород, насыщенных водой, свободно отдавать гравитационную воду.

Ж – способность горных пород вмещать в своих пустотах и удерживать определённое количество воды при возможности свободного её вытекания под действием силы тяжести.

3 – свойство пород пропускать под действием тяжести воду.

И – объем воды, фильтрующейся из водохранилища в единицу времени.

К – метод, позволяющий ориентировочно определять коэффициент фильтрации пород, залегающих выше уровня грунтовых вод.

 Π – вид гидрогеологических исследований, позволяющий в некоторых случаях дать характеристику водопроницаемости «сухих» горных пород.

М - вид гидрогеологических исследований, являющийся основным, наиболее точным методом определения коэффициента фильтрации водоносных пород.

Н – однородный пласт, коэффициент фильтрации в котором не зависит от направления движения потока.

О – скорость движения подземных вод в порах или трещинах породы при напорном градиенте, равном единице.

 Π – линия напоров подземных вод.

Р – повышение уровня воды над водоупорным ложем, равнозначное понятию мощности водоносного пласта.

С – кривая свободной поверхности подземных вод.

Т – случай, когда фильтрующаяся вода насыщает водопроницаемый пласт не на всю его мошность.

У – вид движения воды, при котором происходят пульсация скоростей и перемешивание частиц потока.

 Φ - вид движения воды, при котором нет пульсации скоростей, приводящей к перемешиванию частиц.

Ключ: Ф-1, У-2, Т-3, С-4, Р-5, П-6, О-7, Н-8, М-9, Л-10, К-11, И-12, З-13, Ж-14, Е-15, Д-16, Γ -17, В-18, Γ -19, A-20.

5.2 Типовые задачи с решением

Успешному изучению теоретических основ дисциплины и применению полученных знаний на практике в значительной мере способствует решение задач и примеров, как при групповом обучении, так и при самостоятельной, индивидуальной работе. Студентам в течение семестра преподавателем предлагаются для решения различные задачи по гидрогеологическим исследованиям, выполняемым при поисках, разведке и добыче полезных ископаемых в нашей стране. Некоторые задачи заимствованы из литературных источников.

Рассмотрим пример решения задачи № 9.4 из [1, с. 286,293-295].

Задача 9.4.

В мелкозернистых песках (коэффициент фильтрации κ =7 м/сут, эффективная пористость n=0,07), расположенных на горизонтальном водоупоре, сооружена

совершенная протяженная галерея длиной L=300м. Установившийся на момент начала откачки уровень воды в галерее составлял $H_0=5$ м. Было принято решение о водоотливе из галереи так, что в течение всего процесса в ней будет поддерживаться уровень воды $h_0=0,5$ м.

Определить расход воды Q_{Σ} (м³/сут), поступающей в галерею, через 20 суток после начала водоотлива. Найти соотношение расходов воды Q_{20}/Q_{40} , поступающей в галерею, через 20 и 40 суток. Определить уровень депрессионной кривой h(x,t) (м) на расстоянии x = 30м через t = 15 суток.

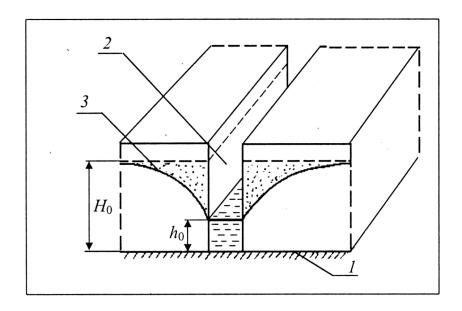


Рисунок 1. Совершенная галерея: *1* - водоупор; *2* - галерея; *3* - депрессионная кривая

Решение

Коэффициент уровнепроводности массива:

$$a = \frac{kH_0}{n} = \frac{7.5}{0.07} = 500 \text{ m}^2/\text{cyt}.$$

Расход воды, поступающей в галерею на единицу ее длины (9.59), на 20-е сутки:

$$Q = \frac{k(H_0^2 - R_0^2)}{\sqrt{\pi at}} = \frac{7(5^2 - 0.5^2)}{\sqrt{3.14 \cdot 500 \cdot 20}} \approx 0.978 \text{ m}^3/(\text{m} \cdot \text{cyt}).$$

Расход воды, поступающей в галерею длиной $L=300~\mathrm{M}$, на 20-е сутки:

$$Q_{\Sigma} = QL = 0.978 \cdot 300 \approx 293.4 \text{ m}^3/\text{cyt.}$$

Соотношение расходов воды, поступающей в галерею, через 20 и 40 сут определяем из сопоставления в различные моменты времени:

$$\frac{Q_{20}}{Q_{10}} = \sqrt{\frac{40}{20}} = \sqrt{2} \approx 1,41.$$

Число Фурье для момента времени t = 15 сут и расстояния x = 30 м:

$$Fo_x = \frac{at}{x^2} = \frac{500 \cdot 15}{30^2} = 8,33.$$

Значение интеграла вероятности определяем по таблицам специальных функций [18]:

$$\theta = \operatorname{erf}\left(\frac{1}{2\sqrt{8,33}}\right) = 0,19.$$

Уровень депрессионной кривой на расстоянии 30 м через 15 сут находим из формулы (9.55):

$$h(x,t) = \sqrt{(H_0^2 - h_0^2)\theta + h_0^2} =$$

= $\sqrt{(5^2 - 0,5^2)0,19 + 0,5^2} = 2,22 \text{ M}.$
 $\underline{Omsem:} Q_{\Sigma} = 293,4 \text{ m}^3/\text{cyr}; Q_{20}/Q_{40} = 1,41; h(30, 15) = 2,22 \text{ M}.$

Рассмотрим ещё один пример по кусту водопонижающих скважин (см. рисунок 2) из [доп. 8. с. 155-156].

Задача 17.

Рассчитать групповую установку водопонижающих скважин, расположенных по прямоугольному контуру размером 60×30 м. Исходные данные: минимально необходимое понижение в пределах контура S=5 м, сниженный уровень H=7 м, радиус, скважин 0,2 м, мощность грунтового потока H=12 м, коэффициент фильтрации k=17,3 м/сутки.

Задаемся числом скважин n = 6 и понижением в скважинах S = 8 м.

1. Радиус влияния по формуле (1)

$$R = 2S \ V \ \overline{Hk} = 2 \cdot 8 \ V \ \overline{12 \cdot 17,3} = 231 \ \text{m}.$$

Приведенный радиус установки по формуле (2)

$$r_0 = \sqrt{\frac{F}{\pi}} = \sqrt{\frac{60 \cdot 30}{3.14}} = 24 \text{ M}.$$

Радиус действия водопонижающей установки

$$R_0 = R + r_0 = 231 + 24 = 255 \approx 250 \text{ m}.$$

При небольшой мощности водоносного горизонта скважины доводим до водоупора.

2. Дебит каждой скважины по формуле В. М. Щелкачева (3)

$$Q' = \frac{1,36k (2H - S) S}{\lg \frac{R_0^6}{6r_0^5 r}} = \frac{1,36 \cdot 17,3 (2 \cdot 12 - 8) 8}{6 \lg 250 - \lg 6 - 5 \lg 24 - \lg 0,20} = 407 \text{ m}^3/\text{сутки}.$$

3. По формуле (4) определяем высоту сниженного уровня грунтовых вод в центре установки:

$$H_{II} = \sqrt{\frac{6Q'}{1,36k} (\lg R_0 - \lg r_0)} = \sqrt{\frac{6 \cdot 407}{1,36 \cdot 17,3} (\lg 250 - \lg 24)} = 6,19 \text{ m.}$$

4. Определим по формуле (5) водопропускную способность скважины при l = H — S=12-8=4 M:

$$f = 120\pi r l \ k^{1/3} = 120 \cdot 3,14 \cdot 0,20 \cdot 4 \cdot (17,3)^{1/3} = 780 \text{м}^3/\text{сутки}.$$

Так как получены удовлетворяющие нас значения $H_{\rm u} = 6{,}19$ м менее 7 м и ${
m Q}^{'} = 407$ m^3 /сутки менее $f = 780 \text{ m}^3$ /сутки, останавливаемся на числе скважин n = 6 и располагаем их по углам контура и посередине длинных сторон, т.е. на расстоянии 30 м одна от другой (см. рис. 2).

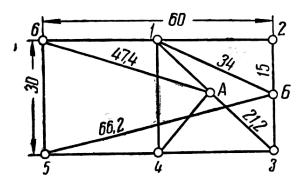


Рисунок 2. Схема расположения водопонижающих скважин.

Дебит установки

$$Q = n \cdot Q' = 6.407 = 2442 \text{ м}^3/\text{сутки}.$$

5. Зная число и расположение скважин, уточняем высоту сниженного уровня

грунтовых вод в центре установки
$$H_{\rm II}$$
 по формуле (6)
$$H_A = \sqrt{12^2 - \frac{6 \cdot 407}{1,36 \cdot 17,3} \left[\lg 250 - \frac{1}{6} \text{ (4 lg 21,21} + 2 \lg 47,10) \right]} = 6,71 \text{ м;}$$

$$H_B = \sqrt{12^2 - \frac{6 \cdot 407}{1,36 \cdot 17,3} \left[\lg 250 - \frac{1}{6} \text{ (2 lg 15} + 2 \lg 34 + 2 \lg 62) \right]} = 7,07 \text{ м} \approx 7 \text{ м.}$$

7. Проверим по формуле (6), достигается ли требуемое понижение уровня грунтовых вод в точках A и B поля осущения (см. рис. 1):

$$H_{II} = \sqrt{H^2 - \frac{6Q'}{1,36k} \left[\lg R_0 - \frac{1}{6} \lg (x_1 x_2 x_3 x_4 x_5 x_6) \right]} =$$

$$= \sqrt{12^2 - \frac{6 \cdot 407}{1,36 \cdot 17,3} \left[\lg 250 - \frac{1}{6} (2 \lg 15 + 4 \lg 33,54) \right]} = 6,40 \text{ M}.$$

Расчет показал, что установкой из шести скважин при понижении 8 м достигается требуемое снижение уровня грунтовых вод, причем фильтр длиной l, равной 4 м, будет легко пропускать откачиваемый расход.

5.3 Методические материалы и указания по выполнению контрольных работ

В контрольную работу № 1 вошли темы по динамике подземных и поверхностных вод; опытные откачки, наливы и нагнетания в скважины и шурфы; экспериментальные и полевые гидрогеологические исследования с целью определения водно-физических свойств горных пород и расчета коэффициентов фильтрации.

В контрольную работу № 2 вошли в основном темы по обводнённости и осушению разрабатываемых месторождений как открытым, так и подземным способами (см. Лыткин В.А. Методические указания к контрольным работам по дисциплинам «Гидрогеология» и «Осушение карьерных полей», 2005)

Матрица задач контрольных работ № 1 и М

N₂	Номера задач по темам								
варианта	1	2	3	4	5	6	7	8	
1	1	2	6	7	8	9	15	17	
2	1	3	6	7	8	10	16	18	
3	1	4	6	7	8	11	15	19	
4	1	5	6	7	8	12	16	17	
5	1	2	6	7	8	13	15	18	
6	1	3	6	7	8	14	16	17	
7	1	4	6	7	8	9	15	18	
8	1	5	6	7	8	10	16	19	
	k	Сонтрольн	ая работа .	№ 1	Кс	нтрольная	и работа №	22	

ТЕМА 1. ПРИТОК ВОДЫ К КОТЛОВАНАМ (КАРЬЕРАМ)

Котлованы могут быть совершенными (доведенными до водоупора) или несовершенными (дно котлована располагается выше водоупора).

При проходке котлованов в неустойчивых породах (например, в песках) и возникновении опасности образования фильтрационных деформаций производится временное искусственное понижение уровня подземных вод. В устойчивых породах применяется внутрикотлованный (внутрикарьерный) водоотлив. В результате возникает необходимость в расчете притока воды непосредственно в котловане (карьере).

По конфигурации в плане можно выделить следующие типы котлованов:

- а) прямоугольные траншей и вытянутые котлованы с превышением длины над шириной более чем в 10 раз;
- б) не вытянутые в длину широкие котлованы квадратной, прямоугольной, круглой и иных распластанных форм.

Не вытянутые в длину котлованы приводятся к фиктивному равновеликому кругу («большому колодцу») с радиусом r_0 -

Приток воды в котлован круглой формы определяется по формуле А.В. Романова:

$$Q = \frac{1,365KS_0}{\lg\left[0,637\frac{R+a}{r_0}coo\cdot 1,57\frac{R-a}{K+a}\right]}$$
(1)

где $S_{\rm o}$ - заглубление котлована относительно статического горизонта воды;

R - радиус влияния откачки из котлована в сторону, противоположную реке; a - расстояние от центра котлована до реки;

 r_{0} -приведённый радиус котлована.

Расчет притока воды к совершенным траншеям и совершенным прямоугольным котлованам производится путём нахождения приведённого радиуса котлована. По Н А. Гиринскому приведённый радиус выражается:

$$R_0 = \eta \frac{L+B}{4} \tag{2}$$

где коэффициент η определяется по табл. 2 в зависимости от соотношения ширины (B) и длины (L) котлована.

Соотношение ширины и длины котлована, В/L	0	0,2	0,4	00,6-1,0
Коэффициент, η	1,0	1,12	1,16	1,18

При неправильной форме котлована

$$R_0 = 0.565 \sqrt{F}$$
, (3)

где F- площадь котлована.

Задача 1.

Определить приток в котлован при следующих данных.

Коэффициент фильтрации пласта K=125 м/сутки. Котлован имеет длину L=100 м и ширину B=30 м. Расстояние от центра котлована до реки a=50 м. Грунтовые воды выклиниваются на поверхность земли в расстоянии R=250 м от центра котлована в сторону коренного берега. Котлован заглубляется на $S_0=10$ м от статического горизонта грунтовых вод и врезается в водоупор.

ТЕМА 2. ФИЛЬТРАЦИЯ ИЗ КАНАЛОВ, БОРТОВ И ДНА КАРЬЕРОВ

а) Канал располагается вдали от дренирующих понижений. Порода однородна на большую глубину, грунтовые воды отсутствуют.

Формула В В. Ведерникова:

$$q = K(B + \alpha H_0),$$
 (4)

где q - фильтрационный расход из канала на единицу его длины;

 $\it B$ - ширина канала трапецеидального сечения по урезу воды;

 H_o - глубина воды в канале;

 α - коэффициент, определяемый в зависимости от отношения B/H_0 и заложения откосов m. Примем α =2.5.

Задача 2.

Определить величину фильтрационных потерь из канала на 1м его длины по следующим данным: ширина канала по урезу воды $B=12 \, M$, глубина воды в канале $H_0=2 \, M$, коэффициент заложения $m=1.5 \, M$; коэффициент фильтрации породы $K=0.5 \, M$ /сумки.

б) Пласт большой водопроницаемости, дренирующий без подпора просачивающуюся воду, залегает на некоторой глубине. В этом случае используется формула В В Ведерникова:

$$q = K(B + \beta H_0), \tag{5}$$

где β - коэффициент, определяемый в зависимости от отношения $B/H_{\rm o}$ и $T/H_{\rm o}$,

где T - глубина залегания сильно водопроницаемого пласта от дна канала. Для рассматриваемого случая β =3,4.

Задача 3.

Определить фильтрационные потери воды из канала на единицу его длины при следующих данных: коэффициент фильтрации породы $0.1~m/cym\kappa u$, ширина канала по урезу воды B=9.6 m, глубина воды в канале $H_{\rm o}$ =12m. На глубине T=6 m от дна залегает сильно проницаемый пласт.

в) На некоторой глубине залегает сильно проницаемый пласт с напорными подземными водами. Здесь применимы формулы С.Н. Нумерова.

Если ширина канала по урезу воды (B) в несколько раз превышает глубину залегания пьезометрической поверхности (h), то

$$Q = KB$$
 (6)

При неглубоком залегании пьезометрической поверхности, именно при соблюдении условия:

$$\frac{B + 0.883h_0}{h + h_0} > 3.82,\tag{7}$$

где $h_{\rm o}$ – превышение пьезометрического уровня над кровлей сильно проницаемого слоя, расчёт потерь производится по формуле

$$q = \frac{Kh(B + 0.883h_0)}{h + h_0},\tag{8}$$

Задача 4.

Определить фильтрационные потери воды из канала, заложенного в породе с коэффициентом фильтрации 0.2 м/сутки Ширина канала по урезу воды 20 м, глубина 1алегания пьезометрической линии напорных вод h=3 m, высота напора над кровлей сильно проницаемого пласта $h_0 = 1.2 \, \text{м}$.

г) Потери на насыщение пород, залегающих под дном и в (водохранилища).

Расчёт времени T, необходимого для насыщения пород, залегающих под карьером (дном водохранилища), производится по формуле (9):

$$T = \frac{\mu}{K} \left[h_0 - 2.3(H_0 + H_k) \lg \frac{H_0 + H_\kappa + h_0}{H_0 + H_\kappa} \right], \tag{9}$$

где H_o - глубина воды в карьере;

 h_o - глубина залегания грунтовых вод (или водоупора при отсутствии грунтовых вод) от дна карьера (водохранилища);

 μ - недостаток насыщения пород, залегающих под дном карьера (водохранилища).

Объём воды, теряемый карьером на насыщение пород под его дном за время T на единицу длины карьера (водохранилища) определяется по формуле (10):

$$V_T = \mu h_0 B$$
, (10)

где B - ширина карьера (водохранилища) по урезу воды;

 $h_{\rm o}$ – средняя глубина залегания уровня грунтовых вод (а в случае их отсутствия – водоупорного пласта) под дном карьера (водохранилища).

Средние фильтрационные потери за период насыщения пород, залегающих под дном карьера (водохранилища):

$$O_{cn}=\mu Bh\sqrt{T}$$
. (11)

 $Q_{cp}\!\!=\!\!\mu B h_o\!/T.$ (11) Потери на насыщение на один борт карьера (водохранилища) при отсутствии грунтового питания реки, однородном пласте и горизонтальном ложе водоупора определяются по формулам Н.Н. Биндемана.

Потери воды из карьера (водохранилища) в момент времени t:

$$Q=0.5\beta H \sqrt{\frac{2\mu KH}{t}}.$$
 (12)

Объём воды, потерянный карьером (водохранилищем) за время t:

$$V_{t} = \beta H \sqrt{2\mu KHt}. \tag{13}$$

Средние фильтрационные потери за время t:

$$q_{cp} = V_t/t = \beta H \sqrt{\frac{2\mu KH}{t}}.$$
 (14)

Задача 5.

Определить фильтрационные потери из карьера в течение 30 суток после его затопления при следующих данных: глубина воды в карьере H_0 =5 м, глубина залегания грунтовых вод от дна карьера $h_0=7~M$ (таким образом, превышение зеркала воды в карьере над горизонтом грунтовых вод H=5+7=12 м); мощность водоносного горизонта $h_1=6$ м; ширина карьера по урезу B=200 м, коэффициент фильтрации породы K=0.15 м/сутки;

недостаток насыщения породы μ =0.20; капиллярное давление при просачивании H_{κ} =0.40 M. Коэффициент β =0.86.

ТЕМА 3. ОПЫТНЫЕ НАЛИВЫ В ШУРФЫ.

<u>Метод Н.К. Гиринского</u>. Налив производится в цилиндр, вдавливаемый в дно шурфа на 1-2 *см*. Диаметр цилиндра от 35 до 50 *см*. Горизонт воды в цилиндре пддерживается на постоянном уровне:

$$K = \alpha \xi Q,$$
 (15)

где К-коэффициент фильтрации, м/сутки,

Q - установившийся расход через дно цилиндра, π/muH ;

 α - коэффициент, зависящий от глубины вдавливания цилиндра (z) и диаметра шурфа (d) (см. таблицу 3);

		Таблица 3			
Соотношение, z/d	0,03	0,04	0,05		
Коэффициент, α	1,06	1,08	1,10		

 ξ - коэффициент, зависящий от глубины воды в цилиндре (H) и высоты капиллярного поднятия (H_{κ})

Задача 6.

Определить коэффициент фильтрации по следующим данным налива в мелкозернистые пески: диаметр цилиндра 40 см, глубина воды в цилиндре H=20 см, высота капиллярного поднятия $h_k=30$ см, установившийся расход Q=0.70 л/мин. Коэффициент $\xi=1.51$.

ТЕМА 4. ОПЫТНЫЕ ОТКАЧКИ ИЗ СКВАЖИН

При проведении откачки из пласта, состоящего из двух слоев (водопроницаемость нижнего слоя значительно больше верхнего), расчёты выполняют по формуле Н.К. Гиринского:

$$Q = \frac{2,73K_2S_0b}{\left[\frac{1,12\sqrt{\frac{K_2}{K_1}ab}}{r_0}\right]}.$$
 (16)

где K_l - коэффициент верхнего (слабопроницаемого) слоя, имеющего мощность a;

 K_2 - коэффициент фильтрации нижнего (сильнопроницаемого) слоя, имеющего мощность b.

Формула (16) содержит два неизвестных: K_1 и K_2 , поэтому одно из них должно быть определено независимо. Например, в одном из слоёв должна быть произведена опытная откачка из скважины по вышеизложенной методике. В ряде случаев для ориентировочной характеристики верхнего слоя можно также пользоваться лабораторными определениями коэффициента фильтрации.

Задача 7.

Определить коэффициент фильтрации гравелистого песка, залегающего на водоупорном ложе и имеющего мощности $b = 4.5 \ m$. На гравелистом песке, под руслом

реки, лежит слой мелкозернистого песка мощностью a=7 м. Коэффициент фильтрации мелкозернистого песка по данным лабораторных определений $K_I=3$ м/сумки. Откачка производилась из скважины диаметром 150 мм ($r_0=0.075$ м). Дебит скважины при понижении $S_0=0.55$ м был 2.6 л/сек, т.е. 225 м³/сумки.

ТЕМА 5. ОПРЕДЕЛЕНИЕ ГЛУБИНЫ ПОТОКА ГРУНТОВЫХ ВОД.

Рассмотрим случай просачивания поверхностных (атмосферных) вод через водораздел, расположенный между двумя реками, отстоящими друг от друга на расстоянии L.

Для случая горизонтального водоупора и равномерного питания водоносного горизонта на рассматриваемом участке величина притока к реке определяется по формуле:

$$q_1 = 0.5WL - K(h_1^2 - h_2^2)/2L,$$
 (17)

где q_I - расход подземных вод, поступающий в реку, глубина грунтового потока у берега которой h_I .

W - инфильтрация, т.е. количество воды, просачивающейся сверху на поверхность грунтовых вод через единицу площади поверхности земли в единицу времени.

Величина W, входящая в формулу (17), может быть определена по уравнению (18):

$$W = \frac{K}{L - x} \left[\frac{h^2 - h_1^2}{x} + \frac{h_1^2}{L} \right], \tag{18}$$

где h - глубина потока в скважине, находящейся в расстоянии x от реки, имеющей уровень h_1

Вместо глубин h_1 и h_2 по краям междуречья можно брать глубины потока грунтовых вод в соседних скважинах, расположенных по обе стороны средней скважины

Уравнение кривой депрессии подземных вод:

$$h = \sqrt{h_1^2 - \frac{h_1^2 - h_2^2}{K} x + \frac{W}{K} x(L - x)},$$
 (19)

где h - искомая глубина грунтового потока в расстоянии x от реки, уровень воды в которой h_1 .

Величина $\frac{W}{K}$, входящая в формулу (19), определяется по уравнению (18), при этом величины А и x в (18) относятся к скважине, уровень воды в которой известен.

Задача 8.

Определить глубину потока грунтовых вод в расстоянии $600 \ m$ от реки A по следующим данным: отметка горизонтального водоупорного ложа $0 \ m$, глубина потока у берега реки A - $8.5 \ m$, y берега реки B - $4.0 \ m$, ширина междуречья $5000 \ m$. В расстоянии $1000 \ m$ от реки A имеется скважина, в которой фиксирован уровень подземных вод на отметке $12.4 \ m$.

ТЕМА 6. ПРИТОК ВОДЫ К СОВЕРШЕННЫМ КОЛОДЦАМ.

<u>Задача 9.</u>

Определить фильтрационный расход воды Q ($m^3/(m \cdot cym\kappa u)$) через прямоугольную перемычку, возведенную на горизонтальном водоупоре. Грунт — плотная супесь с коэффициентом фильтрации K =0.35 $m/cym\kappa u$. Уровни воды за перемычкой: h_1 =2.0 и h_2 =0.6 m. Ширина перемычки l=9.1 m.

Задача 10.

Грунтовой колодец радиусом r_0 =0.125M доведен до водонепроницаемого подстилающего слоя. Мощность грунтового потока, залегающего в крупнозернистых

песках, составляет H_o =15 м. Коэффициент фильтрации K= 12.1 $_{\it M}$ /сумки. Радиус влияния колодца K = 500 $_{\it M}$. Глубина воды в колодце h_0 = 12 $_{\it M}$. Определить дебит колодца Q ($_{\it M}$)/сумки) и вычислить глубину h ($_{\it M}$) грунтового потока на расстоянии $_{\it T}$ = 50 $_{\it M}$ от оси колодца.

Задача 11.

Определить дебит Q (M^3 /сумки) совершенного артезианского колодца. Напорные воды залегают в пласте из среднезернистого песка мощностью $a_0 = 12$ M; коэффициент фильтрации песка K = 7.0 M/сумки; радиус колодца $r_0 = 0.15$ M; глубина откачки S = 4M ($S = H_0 - h_0$); радиус влияния R = 100 M.

Задача 12.

В мелкозернистых песках (коэффициент фильтрации K=7 м/сумки, эффективная пористость n=0.07), расположенных на горизонтальном водоупоре, сооружена совершенная протяжённая галерея длиной L=300 м. Установившийся на момент начала откачки уровень воды в галерее составляет $H_0=5$ м. Принято решение о водоотливе из галереи так, что в течение всего процесса в ней будет поддерживаться уровень воды $h_0=0.5$ м.

Определить суммарный расход воды Q (M^3 /сумки), поступающей в галерею, через 20 сумок после начала водоотлива. Найти соотношение расходов воды Q_{60}/Q_{40} , поступающей в галерею, через 20 и 40 сумок. Определить уровень депрессионной кривой h(x, t) на расстоянии x = 30 м, через t = 15 сумок.

Задача 13.

Вычислить приток воды Q (M^3 /сумки) к совершенному колодцу через 40 сумок после начала его функционирования, если мощность грунтового потока составляет H_0 =15 M, а глубина воды в колодце поддерживается постоянной: h_0 = 12 M. Радиус колодца r_0 = 0.125 M, коэффициент фильтрации грунта K= 12 M/сумки, эффективная пористость N= 0.15.

Задача 14.

Определить расход воды Q ($M^3/4ac$) через прямоугольный водослив, имеющий геометрические параметры, соответствующие параметрам, показанным на рисунке 1.

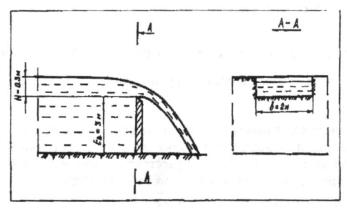


Рисунок 1. К задаче расчёта водослива.

ТЕМА 7. ГЕОЛОГИЧЕСКАЯ СРЕДА И ВОДНО-ФИЗИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД

Задача 15.

Известно, что общая пористость песка равна 0.45, открытая - 0.4, эффективная - 0.35. Определите, сколько физически связанной воды содержит порода. Вычислите коэффициент приведённой пористости.

Задача 16.

Избыточное давление, измеренное в море на глубине h=300~M, равно $p=3.1~\text{М}\Pi a$. Определить плотность ρ морской воды.

ТЕМА 8. СПОСОБЫ ОСУШЕНИЯ МЕСТОРОЖДЕНИЙ

Задача 17.

Рассчитать групповую установку водопонижающих скважин, расположенных по прямоугольному контуру размером 60х30 m . Исходные данные: минимально необходимое понижение в пределах контура S=5 m , сниженный уровень H=7 m , радиус скважин 0.2 m , мощность грунтового потока H= 12 m , коэффициент фильтрации K =17.3 $\mathit{m/cymku}$, n = 6, S =8 m .

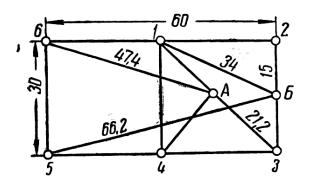


Рисунок 2. Схема расположения водопонижающих скважин.

Задача 18.

Определить приток воды в вертикальный ствол шахты, доведённый до угольного пласта и остановленный на отметке 57 *м* Диаметр ствола 4 *м*. Уровень воды I и II надугольных и III подугольного горизонтов стоит на отметке 80 м Исходные данные приведены на рис. 3.

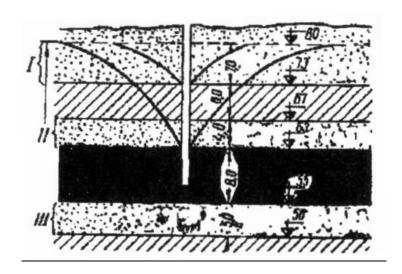


Рисунок 3. Схема понижения подземных вод стволом шахты: I — первый надугольный водоносный горизонт (K=6 $\emph{м/суmкu}$), II — второй надугольный водоносный горизонт (K=4 $\emph{м/суmku}$)-, III — подугольный водоносный горизонт (K=4 $\emph{м/суmku}$)

Задача 19.

Определить приток из опокового напорного водоносного горизонта в водоотливной шурф и водопреградительный штрек длиной 200 м, проведенный вдоль лежачего бока на

расстоянии 60 M от борта карьера (см. рисунок 4). Коэффициент фильтрации опок 10 M/сутки, мощность слоя опок 1.8 M.

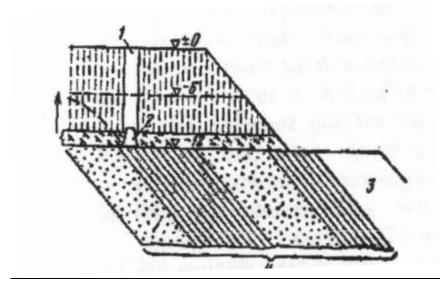


Рисунок 4. Схема расположения дренажных выработок: 1 - шурф; 2 - штрек; 3 - уголь; 4 - коренные породы лежачего бока.

5.4 Примерный перечень тем докладов

- 1. Обводненность месторождений.
- 2. Природные и искусственно созданные факторы, определяющие обводненность.
- 3. Типы обводненных месторождений. Опытные наливы и откачки.
- 4. Методы определения скорости и коэффициента фильтрации подземных вод. Фильтрация из каналов, бортов и дна карьеров.
 - 5. Приток воды к котлованам (карьерам).
 - 6. Расчет установки водопонижающих скважин.
- 7. Определение глубины потока грунтовых вод. Линейный закон фильтрации (закон Дарси).
- 8. Осушение с помощью дренажных шурфов и скважин. Расчет притока воды в вертикальный ствол шахты.
 - 9. Приток воды к совершенным колодцам.
 - 10. Осушение поля карьера. Отвод рек с территории карьера.
 - 11. Определение расхода воды с помощью водослива.

5.5 Примерный перечень тем рефератов

- 1. Природные и искусственные факторы, влияющие на обводнённость месторождения.
 - 2. Гидрогеологические классификации и типы обводненных месторождений.
 - 3. Типы режимов подземных вод и водопритоков в горные выработки.
 - 4. Определение водопритоков в карьер и разрезную траншею.
 - 5. Способы и схемы осущения.
 - 6. Поверхностные способы осущения.
 - 7. Осушение месторождений подземным способом.
 - 8. Защита карьеров от поверхностных и подземных вод.
 - 9. Отвод откачиваемых вод и их учёт.
 - 10. Организация карьерного водоотлива на карьерах комбината ОАО «АПАТИТ» (Восточный рудник).

- 11. Организация карьерного водоотлива на карьерах комбината ОАО «Ковдорский ГОК».
- 12. Организация карьерного водоотлива на карьерах комбината ОАО «Оленегорский ГОК».

5.6 Вопросы к зачету

Зачет проводится путем тестирования. Положительный результат сдачи зачета считается при получении более 50% правильных ответов. Для дифференцирования знаний студента используется нижеприводимая таблица.

Процент правильных ответов	До 50	51-60	61-80	81-100
Количество баллов за ответы	2	3	4	5

Проверка знаний студентов по дисциплине «Осушение карьерных полей» Оценочные средства –Тесты

- 1. В каких случаях месторождение считается обводнённым?
- а) если под рудным пластом находится водоносный горизонт с напорной водой, пьезометрический уровень которой стоит выше почвы полезного ископаемого,
 - б) если уровень подземных грунтовых вод залегает выше рудной залежи,
 - в) если уровень подземных вод залегает ниже подошвы рудного тела.
- 2. От чего зависит обводнённость месторождения?
 - а) от геотектонического фактора,
 - б) от близости водотоков,
 - в) от многолетней мерзлоты,
 - г) от сложности гидрогеологических условий месторождения,
 - д) от количества атмосферных осадков.
- 3. Какие из перечисленных факторов влияют на обводнённость месторождения:
 - а) приобретённые
 - б) природные
 - в) долговечные
 - г) искусственно созданные
 - д) временные
- 4. Что такое эрозионная погребённая долина?
 - а) русло палеореки,
 - б) доледниковая долина,
 - в) древние размывы, содержащие обильные запасы подземных вод.
- 5. Какие из ниже перечисленных факторов относятся к природным:
 - а) затопленная выработка
 - б) тектоника района
 - в) многолетняя мерзлота
 - г) неправильное ведение горных работ
 - д) обнажённость коренных пород
 - е) незатампонированная скважина
 - ж) литологический состав вмещающих пород
 - з) климат
 - и) рельеф местности.
- 6. В каких единицах измеряется коэффициент водообильности?
 - а) м/сек
 - δ) м²/час
 - \mathbf{B}) \mathbf{M}^3 /сутки

- Γ) M^3/T .
- 7. Какие из обводнённых месторождений по классификации С.В. Троянского относятся к дополнительному типу?
 - платформенный,
 - геосинклинальный,
 - промежуточный,
 - соляной,
 - карстовый,
 - россыпные месторождения,
 - месторождения серы.
- 8. Для подсчёта каких запасов используется формула Дарси?
 - а) статических,
 - б) естественных
- 9. Чем отличается объёмная водоотдача от активной пористости?
 - а) ничем,
 - б) единицей измерения,
 - в) количеством связанной воды.
- 10. Чем отличается коэффициента фильтрации от коэффициента подземного стока?
 - а) объёмом фильтрующейся воды,
 - б) единицей измерения,
 - в) ничем не отличается.
- 11. Какая из приведенных формул используется для определения расхода артезианских вод?
 - a) $Q = k \cdot B \cdot H \cdot I$
 - $O(Q) = k \cdot B \cdot M \cdot I$
- 12. Водоприток по водному балансу это:
 - а) произведение объёма осушаемой породы на объёмную водоотдачу,
- б) произведение коэффициента фильтрации на активную пористость и на площадь осущаемого участка,
- в) произведение коэффициента подземного стока на количество осадков и на водосборную площадь.

- 1. Назовите основные, по времени проведения, стадии осущения карьера:
 - а) весенние,
 - б) осенние,
 - в) квартальные,
 - г) опережающие,
 - е) параллельные,
 - ж) полугодовые.
- 2. Выберите три основных требования, которым должны удовлетворять типы дренажных сооружений и способы осущения:
 - а) высокая рентабельность,
 - б) низкая стоимость,
 - в) малая продолжительность,
 - г) зависимость сроков осушения от сроков сдачи карьера в эксплуатацию,
 - д) надёжность выбранного способа осущения.
- 3. Укажите среди перечисленных четыре категории сложности условий осушения:
 - не сложные,
 - весьма сложные
 - простые,
 - очень сложные,
 - средней сложности,

- сложные,
- уникальные по сложности.
- 4. В чём отличие совершенного грунтового колодца от несовершенного? Несовершенный это:
- а) колодец, имеющий проницаемые стенки в пределах части водоносной толщи, но с глухим дном,
- б) колодец, доведенный до водоупора и имеющий проницаемые стенки в пределах всей толщи пласта, но с непроницаемым дном,
 - в) колодец с проницаемыми стенками от подошвы до динамического уровня воды,
 - г) колодец, не доведенный до водоупора,
- д) колодец с проницаемыми стенками и открытым дном, не доведенным до водоупора,
- е) колодец с непроницаемыми стенками и проницаемым дном, не доведенным до водоупора
 - ж) колодец с затопленным фильтром и глухим дном, доведенным до водоупора.
- 5. По какой из формул рассчитывают приток воды к совершенному артезианскому колодцу?
 - a) Q = [1,36k(2H-S)S] / (lgR-lgr),
 - 6) Q = [2,73kMS] / (lgR-lgr),
 - B) $Q = kB(H^2 h^2) / 2R/$
- 5. Какие методы используют при определении водопроницаемости сухих пород с помощью опытных наливов?
 - а) метод Биндемана,
 - б) метод Болдырева,
 - в) метод Каменского,
 - г) метод Нестерова,
 - д) метод Гиринского,
 - е) метод Толстихина.
- 6. Что приближённо рассчитывают по формуле И.П. Кусакина: $R=2S(Hk)^{1/2}$?
 - а) снижение уровня грунтовых вод,
 - б) коэффициент водоотдачи,
 - в) размер депрессионной воронки,
 - г) мощность водоносного горизонта.
- 7. Какие основные методы существуют для определения скорости и коэффициента фильтрации подземных вод:
 - а) физико-химический,
 - б) химический,
 - в) геофизический,
 - г) геометрический,
 - д) электролитический,
 - е) колориметрический
- 8. Как производится расчёт групповой установки водопонижающих скважин при вскрытии разрезной траншеи?
 - а) аналитически,
 - б) графо-аналитически,
 - в) по специальным формулам,
 - г) приближённо,
 - д) с допустимой погрешностью,
 - е) по формулам с учётом взаимодействия скважин.
- 9. По каким формулам вычисляют приток воды к котлованам и карьерам?
 - а) по формуле А.В. Романова,
 - б) по формуле Н. К. Гиринского,
 - в) по формуле Д.А. Казаковского,

- г) по формуле В.М. Насберга.
- 10. Фильтрация из траншей (каналов), бортов и дна карьеров. Какая из приведенных формул является формулам В.В. Ведерникова:
 - a) Q = [1,36k(2H-S)S] / (lgR-lgr),
 - σ) q=K(B+βH_o),
 - B) $q = K(B + \alpha H_0)$,
 - r) q≈KB,
 - д) $q=0.5K(h_1+h_2)\cdot H/l$.
- 11. Осушение месторожденийс помощью дренажных шурфов и скважин. Приток воды в ствол рассчитывается по формуле:
 - а) Н.Н. Веригина,
 - б) Дюпюи,
 - в) Дарси,
 - г) Г.Н. Каменского.
- 12. Четырёхярусная водопонижающая установка применяется при осушении котлована на глубину:
 - a) 10-20м,
 - б) 3-5м,
 - в) 50-100м.
- 13. Водопонижающую лёгкую иглофильтровую установку используют для понижения уровня грунтовых вод при проходке:
 - а) шахт,
 - б) карьеров,
 - в) подземных горных выработок,
 - г) метрополитенов,
 - д) тоннелей.
- 14. Где закладываются горизонтальные дренажные канавы неглубокого заложения?
 - а) на возвышенных местах горного отвода,
 - б) на дне котлована,
 - в) на бровке карьера,
 - г) на уступах карьера,
 - д) на въездной траншее.
- 15. Ожидаемый приток воды в ограждающую дрену и карьер производят по формуле:
- $Q=0.5kL(h_1+h_2)\cdot(H_1-H_2)$ / l. Что определяют в этой формуле входящие в неё параметры?
- 16. Определение водопритоков в карьер прямоугольного сечения. Как рассчитать величину приведённого радиуса?
 - а) по методу С.В. Троянского,
 - б) по формуле $r_0 = (F/\pi)^{1/2}$,
 - в) по формуле Н.К. Гиринского $r_0=0.25\eta(L+B)$.
- 17. Горизонтальный дренаж в откосах карьера при проведении разрезной траншеи. С каким уклоном прокладывается дрена в сторону карьера?
 - a) 0.1,
 - б) 0.01,
 - в) 0.001,
 - г) 0.0025.
- 18. Общая характеристика поверхностных способов осушения карьерных полей. Что из нижеперечисленных способов не входит в перечень поверхностных способов осушения?
 - а) проходка аэрирующих скважин,
 - б) ярусное осущение,
 - в) глубокий дренаж водопонижающими или водопоглощающими скважинами,
 - г) сооружение забивных фильтров,
 - д) горизонтальный дренаж в откосах карьера,
 - е) горизонтальный дренаж неглубокого заложения.

Разлел 3

- 1. Осушение месторождений подземным способом. Какие из перечисленных типов дренажных устройств относятся к подземным способам осушения?
 - а) дренажные шурфы и скважины,
 - б) дренажный штрек,
 - в) забивные вакуум-фильтры,
 - г) горизонтальный дренаж неглубокого заложения,
 - д) глубокий дренаж водопонижающими или водопоглощающими скважинами.
- 2. Какие из перечисленных горных выработок входят в схему осущения карьера дренажными шурфами и штреками?
 - а) квершлаг к дренажному шурфу,
 - б) водоотливной шурф,
 - в) дренажный штрек,
 - г) гезенк,
 - д) восстающая горная выработка,
 - е) дренажная канава.
- 3. Какие формулы используют при расчёте притока воды в вертикальную выработку, пересекающую несколько водоносных горизонтов?
 - a) Q=[1.36k(2H-M)M] / (lgR-lgr);
 - б) $Q = kBR^{-1}(2H-M)M$;
 - B) Q=2dSk;
 - Γ) Q=1.36kH² / (lgR-lgr);
 - д) $R=2S(Hk)^{1/2}$;
 - e) $Q=BkH^2R^{-1}$.
- 4. Какие формулы применяют для расчёта притока воды в дренажный штрек, заложенный на водоупоре в безнапорном или напорном водоносных слоях?
 - a) $Q = BkH^{2}R^{-1}$;
 - б) $Q = kBR^{-1}(2H-M)M$;
 - в) O=2dSk;
 - Γ) Q=1.36kH² / (lgR-lgr);
 - $_{\rm J}$) Q=[1.36k(2H-M)M] / (lgR-lgr).
- 5. Что из себя представляет забивной фильтр? Где устанавливаются забивные фильтры?
 - а) в кровле подземных горных выработок,
 - б) в почве подземных горных выработок,
 - в) в забое дренажного штрека,
 - г) в стенках штольни.
- 6. Для чего используют аэрирующие скважины и вакуум-фильтры?
 - а) для освобождения от воды пор и трещин,
 - б) для уменьшения дебита забивных фильтров,
 - в) для заполнения пор и трещин воздухом,
 - г) для повышения работоспособности забивных фильтов,
 - д) для получения разрежения в пласте.
- 7. Определение общего притока в карьер или в дренажные горные выработки по водному балансу. Определить общий водоприток в систему дренажных горных выработок можно:
 - а) по разнице между естественными ресурсами и статическими запасами,
 - б) по методу «большого колодца»,
- в) как сумму статических запасов, удаляемых при осушении месторождения, и естественных ресурсов, поступающих к участку разработки из области питания,
 - г) по методу И.А. Скабаллановича,
- д) как произведение коэффициента подземного стока на количество осадков и на водосборную площадь.

- 1. Осушение внутренних отвалов при открытом способе отработки месторождений. От чего зависит устойчивость отвалов?
 - а) от угла наклона неподвижного борта,
- б) от уменьшения просачивания осадков у переднего края откоса внутреннего отвала,
 - в) от углов наклона откосов подвижного борта,
- г) от проведения специальных мероприятий по увеличению прочности поверхности внутреннего отвала,
 - д) от географического места расположения внутреннего отвала по странам света,
 - е) от переувлажнения пород отвала.
- 2. Перечислите способы осушения с поверхности земли или с уступов карьера:
 - а) горизонтальный дренаж неглубокого заложения,
 - б) открытый водоотлив,
 - в) глубокий дренаж (глубокое водопонижение),
 - г) ярусное осушение,
 - д) использование схемы скользящих веерных рядов,
 - е) проходка специальных стволов шахт,
 - ж) горизонтальный дренаж в откосах карьера.
- 3. Защита карьера от поверхностных вод.
 - а) постройка защитных сооружений,
 - б) ограждение карьера от поверхностных вод, стекающих с водосборной площади,
 - в) сооружение дамб,
 - г) отвод рек с территории карьера,
 - д) осушение поля карьера.
- 4. Что делают для борьбы с водопритоками из рек на территорию карьера?
 - а) оставляют целики под водотоками,
 - б) отводят реки,
 - в) перехватывают водотоки за пределами карьера,
 - г) сооружают водоотводные каналы,
 - д) изменяют продольный уклон и сечение русла рек,
 - е) сооружают водохранилища.
- 5. Перспективы и пути совершенствования искусственного водопонижения на карьерах.
 - а) осуществление экономически оправданного осушения с поверхности,
- б) организация выпуска наиболее совершенных насосов с погружными электродвигателями,
 - в) оконтуривание всего поля карьера водонепроницаемым барражем,
- г) ограждение участков горных работ от поступления естественных ресурсов подземных вод со стороны,
- д) откачка только статических запасов подземных вод, имеющихся непосредственно на поле карьера и составляющих около 10% всех откачиваемых вод в карьере,
 - е) повышение вязкости подземных вод, путём применения различных смол.
- 6. Отвод откачиваемых вод и их учёт. Куда подаётся вода из карьера?
 - а) на рабочий борт,
 - б) на нерабочий борт,
 - в) на внутренние отвалы,
 - г) на верхнюю бровку борта,
 - д) по открытой канаве в реку или балку.
- 7. Количество откачиваемой воды измеряется:
 - а) на глаз,
 - б) с помощью водослива,
 - в) с помощью водомерных счётчиков.

Проверка остаточных знаний студентов по дисциплине «Осушение карьерных полей» выполняется по следующим тестам: Ниже приводятся определения некоторых терминов. Выберите правильное определение для каждого термина из списка:

Оценочные средства -Тесты

Раздел 1

- 1. Что относится к экологическим факторам?
 - а) абиотические факторы;
 - б) биотические факторы;
 - в) антропогенные факторы;
 - г) лимитирующие факторы.
- 2. Назовите самую крупную экосистему:
 - а) экосистема континентов;
 - б) экосистема Мирового океана;
 - в) биосфера.
- 3. Чем представлена живая часть экосистемы?
 - а) биогеоценозом;
 - б) биоценозом.
- 4. Продуценты это:
 - а) производители органического вещества;
 - б) потребители живого вещества;
 - в) разрушители органических остатков.
- 5. В каких слоях атмосферы обитают живые организмы?
 - а) тропосфере;
 - б) стратосфере;
 - в) литосфере;
 - г) термосфере.
- 6. Что является непреложной истиной в экологии?
 - человек хозяин природы;
 - главенство рыночной экономики;
 - гармония производства и потребления;
 - стремление к социальной справедливости;
 - гармония взаимодействия человека и природы.
- 7. Расставьте по порядку (в последовательности повышения их опасности) техногенные отрасли, предприятия которых могут вызвать глобальные загрязнения природной среды:
 - атомная промышленность;(1)
 - химическая промышленность;(3)
 - цветная металлургия;(5)
 - черная металлургия;(4)
 - нефтедобывающие и перерабатывающие отрасли. (2)
 - 8. Что главное в докладах Римского клуба?
 - идея о господствующем положении человека в природе;
 - рекомендации по оптимизации глобальных экологических противоречий;
 - доминирование в обществе интересов мирового рынка.
- 9. Приведите соответствующие определения следующим подходам к решению вопросов природопользования:

Наименование подходов:

- натуралистический;
- потребительский;
- концепция алармизма;
- конструктивистский;
- мальтузианский.

Определение подходов:

- превосходство человека (общества) над природой;
- невмешательство в природу или «назад к природе»;
- экологический пессимизм (тревожное ожидание);
- ограничение пределов роста народонаселения планеты;
- глобальное управление природной средой.
- 10. Что является противовесом глобальному экологическому рационализму природопользования?
 - экологическая охрана природы;
 - экологический иррационализм;
 - экологическая достаточность.
 - 11. Что является основой принципа экологического рационализма?
 - экологическая целесообразность;
 - производственная необходимость;
 - корпоративные или социальные интересы;
 - потенциал экологической достаточности.
 - 12. Что является общим экологическим принципом охраны природы?
 - сохранение природных ландшафтов, их биоценоза;
 - минимизация совокупных потерь косной и живой природы;
 - восстановление чистоты водного и воздушного бассейнов;
 - научно-обоснованное землепользование.
 - 13. Какие природные объекты обладают экологической потребительной стоимостью?
 - водный и воздушный бассейны, природные ландшафты;
 - земельные и лесные угодья, запасы подземных вод;
 - запасы полезных ископаемых.
 - 14. Как оценивается эффективность экологической охраны окружающей среды?
- как системный показатель прибыли, полученный от сохранения чистоты продуктивности природной среды, являющейся индикатором здоровья людей и продолжительность их жизни;
- как системный показатель прибыли, полученный от сохранения и рационального использования природных ресурсов и естественных условий;
- как показатель эколого-социально-экономической прибыли, понимаемый как конечный результат природоохранных мероприятий.
- 15. Какую роль в управлении и экономическом регулировании экологической охраны природы и окружающей среды играют кадастры и реестры природных ресурсов?
- введение стимулирующих льготных налогов, цен на экологически чистую продукцию;
- дифференцирование взимания платы за пользование природными ресурсами с учетом ренты;
- установление нормативных налоговых и других видов платежей, штрафных санкций за загрязнение окружающей среды.
- 16. Расставьте по порядку (по степени снижения их вредного воздействия на окружающую среду) виды транспорта:
 - ракетно-космический;(5)
 - водный;(6)
 - авиационный;(4)
 - железнодорожный;(3)
 - автомобильный;(1)
 - трубопроводный.(2)
- 17. Расставьте по порядку (в последовательности увеличения экологической нагрузки на окружающую среду) объекты топливно-энергетического комплекса:
 - ТЭС, сжигающие уголь и горючие сланцы;(5)
 - геотермальные электростанции;(1)

- ТЭС, сжигающие нефтепродукты;(4)
- ТЭС, сжигающие газ;(2)
- АЭС, при их безаварийной работе.(3)
- 18. Кто несет юридическую ответственность за экологические правонарушения?
 - штатные сотрудники природоохранных организаций;
- должностные (юридические) и физические лица, причастные к экологическим правонарушениям;
 - члены общественных природоохранных организаций.
- 19. Какая статья уголовного кодекса в сфере экологии предусматривает лишение свободы сроком от 12 до 20 лет?
 - загрязнение вод (ст. 250);
 - загрязнение атмосферы (ст. 251);
 - экоцид (ст. 358);
 - нарушение правил охраны и использования недр (ст. 255).
- 20. Что рассматривалось в 1992 г в «Повестке дня» конференции ООН в Рио-де-Жанейро?
 - Декларация РИО об окружающей среде и развитии;
 - Заявление о принципах отношения к лесам;
 - Киотский протокол об ограничении выбросов в атмосферу парниковых газов.
 - 21. Что является альтернативой неконтролируемым свалкам ТБО?
 - несанкционированные свалки ТБО;
 - полигоны ТБО;
 - санкционированные свалки ТБО;
 - технологические отвалы.

Ралел 2

- 1. Геохимические аномалии это поля с:
 - а) повышенными содержаниями элементов;
 - б) пониженным содержанием элементов;
 - в) фоновыми содержаниями элементов.
- 2. Что влияет на образование природных геохимических аномалий?
 - а) солнечное излучение;
 - б) состав горных пород;
 - в) структура;
 - г) геохимические процессы.
- 3. Где наблюдаются природные геохимические аномалии?
 - а) у промышленного объекта:
 - б) в районе месторождений;
 - в) вблизи обогатительной фабрики.
- 4. Что является основным химическим показателем геохимической аномалии?
 - а) ПДК;
 - б) коэффициент концентрации элемента;
 - в) фоновый показатель.
- 5. На что влияет токсичность рудных месторождений?
 - а) на способы разработки месторождения;
 - б) на здоровье людей;
 - в) на изменение уровня подземных вод.
- 6. Какие из этих соединений входят в состав пыли, выбрасываемой в атмосферу?
 - a) PbO, ZnO, SeO₂, As₂O₃
 - б) SO₂, CH₄, CO₂, CO
 - в) SiO₂, Al₂O₃, CaO, K₂O, Na₂O.
- 7. К каким последствиям приводят выбросы в атмосферу?
 - а) к потере прозрачности воздуха;

- б) к нарушению режима температуры;
- в) к ожогам кожи;
- г) к изменению кровеносной системы.
- 8. Каким геологическим процессам подвергаются отвалы техногенных пород?
 - а) выветриванию;
 - б) испарению;
 - в) водной и ветровой эрозии.
- 9. Какие геохимические изменения природы вод происходят в результате разработки сульфидных месторождений?
 - а) накопление тяжелых металлов;
 - б) условия миграции химических элементов;
 - в) рассеяние тяжелых металлов.
 - 10. К каким изменениям приводит разработка месторождений нефти на шельфе?
 - а) нарушается температурный режим;
 - б) изменяется электропроводность;
 - в) понижается мутность воды;
 - г) происходит заиливание дна.

- 1. Какие природные объекты являются экологически напряженными?
 - пассивные окраины континентов;
 - внутриплатформенные территории;
 - активные окраины континентов;
 - зоны столкновения континентов;
 - рифтовые зоны континентов.
- 2. Что является субстратом геологической среды?
 - атмосфера;
 - литосфера;
 - гидросфера;
 - ядро Земли и ее мантия.
- 3. В каких ландшафтах происходит саморегулирование природных процессов?
 - горно-промышленных;
 - естественных;
 - антропогенных.
- 4. Какими показателями оценивается степень устойчивости геологической среды?
 - изменением климата;
 - геодинамическим потенциалом;
 - геохимическим загрязнением.
- 5. Чем отличаются базисные законы экологии от концептуальных положений геоэкологии?
 - приоритетом субъективного толкования над объективным;
 - более строгим ограниченным толкованием;
 - меньшей конкретностью.
 - 6. Какое главное условие проведения геологоразведочных работ?
 - соблюдение стадийности;
 - детальность исследований;
 - соблюдение природоохранных мер.
- 7. Укажите масштаб геоэкологического изучения территории РФ: обзорного, мелко-, средне- и крупномасштабного:
 - 1:50000 (1:25000);(4)
 - 1:1000000 (1:500000);(2)
 - 1:2500000;(1)
 - 1:200000 (1:100000).(3)

- 8. Что является конечным результатом геоэкологических исследований при разведочных работах?
- внедрение экологически безопасных разведочных методов и технологий их проведения;
 - разработка и внедрение рекультивационных технологий;
- обоснование геоэкологической безопасности вовлечения месторождения в эксплуатацию.
- 9. Какой самый опасный радиационный токсикант на объектах связанных с поисками, разведкой и добычей урана?
 - урансодержащие минералы;
 - необогащенная урановая руда;
 - радон.

- 1. Что из перечисленного относится к исчерпаемым и что к неисчерпаемым ресурсам Земли?
- а) вода, воздух, недра Земли и космические ресурсы (солнечная радиация, энергия морских приливов и т.п.);
 - б) флора, фауна, почва, биологическое сырье и полезные ископаемые.
- 2. Какое понятие относится к контролингу предприятием и какое к мониторингу изменений в окружающей природной среде?
- а) инструмент управления предприятием для процесса принятия организационных решений: анализ, подготовка и контроль выполнения;
- б) непрерывное комплексное наблюдение за объектами, измерение параметров и анализ их функционирования.
- 3. Какой из перечисленных пунктов относится к открытой, полуоткрытой и закрытой системе горного производства?
- а) предусматривается избирательное использование отходов, организацию частичного оборота воды в замкнутом контуре, попутное извлечение некоторых ценных компонентов из минерального сырья;
- б) карьер (рудник или шахта), с обогатительной фабрикой и гидрометаллургическим заводом;
- в) комплексная переработка минерального сырья, извлечение ценных компонентов из отходов, утилизация пустых пород в удобрения и строительные материалы, выщелачивание твердых полезных ископаемых.
- 4. Какие мероприятия относятся к технологической, экологической, защитнопрофилактической, организационной группе?
 - а) обеспечение качества природной среды;
- б) предотвращение потерь, снижения качества сырья, интенсивности разрушения массива;
- в) охрана некондиционных запасов в недрах, водоносных горизонтов, объектов на поверхности, предотвращение возникновения пожаров;
 - г) обеспечение комплексного использования недр и минеральных ресурсов.
 - 5. Что не относится к мерам по предотвращению загрязнения воздуха?
- а) разбавление метана свежим атмосферным воздухом за счет общешахтной нагнетательной вентиляции и местной всасывающей;
 - б) изоляция выработанного пространства;
 - в) средства индивидуальной защиты шахтера («самоспасатель»);
 - в) контроль за состоянием и качеством проветривания;
 - г) опережающая дегазация пластов;
 - д) дегазация выработанного пространства;
 - е) применение горного оборудования во взрывобезопасном исполнении.
 - 6. Что не относится к способам борьбы с рудничной пылью?

- а) применение очистных и проходческих комбайнов с крупным срезом стружки;
- б) предварительное нагнетание в пласт воды;
- в) применение взрывной отбойки патронированными ВВ;
- г) орошение забоя;
- д) сухое пылеулавливание;
- е) связывание пыли полимерами;
- ж) применение средств индивидуальной защиты (респиратор).
- 7. Что не относится к защите гидросферы от загрязнений?
 - а) механическая очистка сточных и шахтных вод;
 - б) бурение шпуров и скважин с промывкой;
 - в) использование коагулянтов и сорбентов;
 - г) хлорирование;
 - е) утилизация жидких промышленных отходов;
 - ж) создание пневмобарьера.
- 8. Что не относится к защите литосферы?
 - а) технологии по утилизации и обезвреживанию промышленных отходов;
 - б) сжигание токсичных отходов;
 - в) ликвидация воронок обрушения;
 - г) переработка отходов в шлаковом расплаве;
 - д) рекультивация карьера и промплощадки рудника (шахты);
 - е) обеззараживание загрязненных территорий;
 - ж) противоэрозионные мероприятия.
- 9. Какие мероприятия не относятся к изоляции и захоронению отходов?
- а) хранение отходов в специальных наземных, слабоуглубленных и подземных сооружениях;
- б) размещение отходов в глубоких океанических впадинах с застойными режимами перемещения вод;
 - в) закладка выработанного пространства;
 - г) размещение отходов в мощных толщах материковых льдов;
 - д) преобразование отходов в нейтральное вещество;
 - е) сжигание, переработка отходов.
 - 10. Что не относится к экологическому воздействию?
 - а) вентиляция шахт и карьеров;
 - б) водоотлив и водозабор;
 - в) осущение месторождений;
 - г) сооружение отвалов, хвостохранилищ;
 - д) шум, сейсмика взрывов;
 - ж) отчуждение и изъятие земель;
 - з) оформление земельного и горного отвода;
 - и) добычные работы.

- 1. Когда должны разрабатываться профилактические мероприятия по минимизации вредного воздействия объектов недропользования на окружающую среду?
 - 1. в процессе строительства и эксплуатации объекта;
 - 2. при проектировании объекта;
 - 3. после завершения эксплуатации объекта.
- 2. Что контролирует, учитывает и прогнозирует горно-геологический мониторинг на объектах недропользования?
 - 1. климатические изменения;
 - 2. загрязнение воздушного и водного бассейнов;
 - 3. изменение ландшафта;

- 4. движение разведанных запасов полезных ископаемых, их погашение, потери и разубоживание.
 - 3. Назовите один из приоритетных принципов геоэкологической экспертизы.
 - 1. производственная необходимость
 - 2. экономическая целесообразность
- 3. соблюдение технологических норм проектирования и экологии недропользования
 - 4. корпоративные интересы недропользователей
 - 4. Укажите супертоксичную геохимическую группу элементов
 - 1. Cu, Zn, S, Bi, Ag;
 - 2. Ti, Na, K, Ta, Rb, Ca, Si, Nb;
 - 3. Hg, Cd, Tl, Be, U, Rn, радионуклиды Sr и др.;
 - 4. Pb, Se, Te, As, Sb.
- 5. Какая взаимозависимость (корреляции) между величинами потерь и разубоживания?
- 1. прямая; т.к. в. формуле: $\Pi\%=[1-D(a-b)/B(c-b)]\cdot 100$ чем больше разубоживаемой породы (B), тем выше потери (Π) . Здесь: D-количество добытого полезного ископаемого, a-содержание компонента в добытом полезном ископаемом, b-содержание компонента во вмещающей (разубоживающей) полезное ископаемое породе, c-содержание компонента в запасах полезного ископаемого.

При b=0 формула упрощается: $\Pi\%=[1-(D\cdot a/B\cdot c)]\cdot 100$. Если D=B потери равны 0.

- 2. обратная;
- 3. неопределенная.
- 6. Какими показателями выражается регламентация санитарно защитных зон предприятий при добыче полезных ископаемых?
 - 1. расстояние, м;
 - 2. площадь, M^2 ;
 - 3. объем, м^{3.}
- 7. Укажите группу минерального сырья с наибольшим размером платежа на ее добычу.
 - 1. горно-химическое сырье;
 - 2. радиоактивное сырье;
 - 3. нефть, природный газ;
 - 4. черные металлы;
 - 5. цветные и редкие металлы.
- 8. Укажите загрязняющее вещество за сброс, которого в поверхностные и подземные воды плата наиболее высокая
 - 1. нефть и нефтепродукты;
 - 2. ртуть;
 - 3. железо.

- 1. Как соотносятся экология и экономика по затратным статьям:
 - прямая корреляционная связь;
 - обратная корреляционная связь;
 - отсутствие связи (взаимозависимости).
- 2. Куда поступает плата за пользование недрами?
 - на производственные нужды предприятия недропользователя;
 - в бюджет административных управленческих структур;
 - на статью соцкультбыта населения.
- 3. Какое структурное подразделение выдает лицензию на право недропользования, на выбросы, сбросы и размещение твердых отходов?
 - Министерство сельского хозяйства РФ;

- Росгортехнадзор;
- Министерство природных ресурсов РФ;
- Министерство образования и науки РФ.
- 4. С каким понятием связано случайное вредное воздействие на окружающую среду объектами недропользования?
 - «парникового эффекта»;
 - технического риска;
 - ройялти, т.к. ройялти это плата за право разработки природных ресурсов.
 - 5. Какие причины конфликтов между бизнесом и охраной окружающей среды?
 - стремление бизнеса к получению максимальной прибыли;
- несовершенство экономических механизмов и законодательства в экологической сфере;
 - штрафные санкции.

Преподаватель, для уточнения той или иной оценки, может задать дополнительные вопросы из теоретического курса или из нижеприведенного перечня.

5.7 Примерный перечень дополнительных вопросов к зачету

- 1. Что такое оборотное водоснабжение?
- 2. В чем особенность техногенеза при бурении морских скважин?
- 3. Какие существуют методы ликвидаций нефтяных загрязнений водных объектов?
- 4. Какие бывают нарушения природной среды при бурении геотехнологических скважин?
 - 5. С помощью, каких методов осуществляется очистка буровых сточных вод?
 - 6. Назовите технологические схемы очистки буровых сточных вод.
- 7. Какие существуют методы и технологические схемы очистки буровых сточных вод на акваториях?
- 8. Перечислите методы обезвреживания и утилизации отработанных буровых растворов и бурового шлама.
- 9. Какие применяются технологические схемы обезвреживания отработанных буровых растворов и шлама?
 - 10. Назовите методы обезвреживания шлама при морском бурении скважин.
 - 11. Перечислите мероприятия по охране воздуха при бурении скважин.
 - 12. Назовите мероприятия по охране водных ресурсов при бурении скважин.
- 13. Какие мероприятия применяют по защите окружающей среды при морском бурении скважин?
- 14. Перечислите состав основных природоохранных мероприятий для разных этапов строительства скважин.
 - 15. Какие мероприятия осуществляют при ликвидации и консервации скважин?
 - 16. Назовите мероприятия по рекультивации земель и подземных вод.
- 17. Какие применяются геотехнологические методы для добычи твердых полезных ископаемых с помощью скважин?
 - 18. Каковы источники загрязнения окружающей среды при бурении скважин?
 - 19. Какие бывают виды нарушений природной среды при приведении буровых работ?
 - 20. Назовите производственно-технологические буровые отходы.

ТЕХНОЛОГИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

21.05.04 Горное дело

Специализация №3 Открытые горные работы

(код, направление, направленность, (профиль))

ТЕХНОЛОГИЧЕСКАЯ КАРТА

Шифр дисп	Б1.Е	3.O Д	[.7						
Дисциплина Осушение карьерны					олей				
Курс	5,6	семестр	10-11						
Кафедра горного дела, наук о Земле и природообустройства									
Ф.И.О. преподавателя, звание, Лыткин Виталий Андреевич, к.гм.н., доцент кафедры							афедры		
должность								ва	
Общ. трудоемкость, час/ЗЕТ 72/2				Ко	л-во сем	местров	2	Форма контроля	Зачет 4/4
ЛКобщ./тек. сег	М.	4/4 ΠΡ/CΝ	общ./тек. сем.		6/6	ЛБобщ./те	ек. сем.	-/- СРС _{общ./тек. сем}	58/58

Компетенции обучающегося, формируемые в результате освоения дисциплины:

- владеть навыками анализа горно-геологических условий при эксплуатационной разведке и добыче твердых полезных ископаемых, а также при строительстве и эксплуатации подземных объектов (ПК-1);

- способность проектировать природоохранную деятельность (ПСК-3.5).

Код формируемой компетенции	Содержание задания	Количество мероприятий	Максимальное количество баллов	Срок предоставления					
Вводный блок									
Не предусмотрен									
	Осн	овной блок							
	Практическая работа.								
ПК-1, ПСК-3.5	Устный опрос на	1	3	Во время сессии					
	понимание терминов.								
ПК-1, ПСК-3.5	Практическая работа. Решение задач	3	15	Во время сессии					
ПК-1, ПСК-3.5	Практическая работа. Доклад с презентацией	1	10	Во время сессии					
ПК-1, ПСК-3.5	Практическая работа. Реферат	1	10	Во время сессии					
ПК-1, ПСК-3.5	Практическая работа. Контрольная работа	2	20	за 2 недели до сессии					
ПК-1, ПСК-3.5	Практическая работа. Групповая дискуссия	2	2	Во время сессии					
		Всего:	60						
Davion		Вопрос 1	20	По поотический					
Зачет		Вопрос 2	20	По расписанию					
		Всего:	40						
		Итого:	100						
	Дополн	ительный блок	T						
ПК-1, ПСК-3.5	Подготовка опорного ко	онспекта	5	По согласованию с					
ПК-1, ПСК-3.5	Подготовка глоссария	5	преподавателем						
B	Всего баллов по дополни	тельному блоку:	10						

Оценочная шкала в рамках балльно-рейтинговой системы МАГУ: «2» - 60 баллов и менее, «3» - 61-80 баллов, «4» - 81-90 баллов, «5» - 91-100 баллов.