Приложение 2 к РПД Электрические станции и подстанции 13.03.02 Электроэнергетика и электротехника Направленность (профиль) «Высоковольтные электроэнергетика и электротехника» Форма обучения — заочная Год набора - 2018

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Физики, биологии и инженерных технологий
2.	Направление подготовки	13.03.02 Электроэнергетика и электротехника
3.	Направленность (профиль)	Высоковольтные электроэнергетика и электротехника
4.	Дисциплина (модуль)	Электрические станции и подстанции
5.	Форма обучения	заочная
6.	Год набора	2018

2. Перечень компетенций

- способностью участвовать в планировании, подготовке и выполнении типовых экспериментальных исследований по заданной методике (ПК-1)
- способностью рассчитывать режимы работы объектов профессиональной деятельности (ПК-6)
- способностью составлять и оформлять типовую техническую документацию (ПК-9)

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

	•	Критерии и показатели оценивания компетенций			Форми и монтро на офор
Этап формирования компетенции (разделы, темы дисциплины)	Формируемая компетенция	Знать:	Уметь:	Владеть:	Формы контроля сфор- мированности компе- тенций
Цель и задачи дисциплины. Место дисциплины в учебном процессе. Понятие об энергосистеме, структура энергосистем.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест Тест, презентация, док- лад
Электростанции и подстанции как элементы энергосистемы. Основные типы электростанций и подстанций, их характерные особенности.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	
Проводники и электрические аппараты, используемые на электростанциях и подстанциях. Их нагрев в продолжительных режимах и при коротких замыканиях.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест, презентация, ре- шение задач, доклад
Термическая и электродина- мическая стойкость провод- ников и электрических аппа- ратов.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест, презентация, ре- шение задач, деловая игра

Синхронные генераторы и компенсаторы. Основные эксплуатационные характеристики. Способы включения в сеть. Современные системы возбуждения.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест, презентация, ре- шение задач, деловая игра
Силовые трансформаторы и автотрансформаторы. Допустимые систематические нагрузки и аварийные перегрузки. Особенности режимов работы автотрансформаторов	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест
Дугогасительные устройства электрических аппаратов переменного и постоянного тока. Основные параметры и эксплуатационные характеристики современных выключателей, разъединителей и других электрических аппаратов.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест, презентация, дело- вая игра
Выбор электрических аппаратов и проводников и их проверка по условиям короткого замыкания.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест, решение задач
Схемы электрических соединений распределительных устройств разных типов	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределитель-	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест, презентация, док- лад

		ных устройств разных ти- пов			
Схемы электрических соединений электростанций и подстанций.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест, решение задач, доклад
Системы собственных нужд электростанций и подстанций.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Тест, презентация, док- лад
Конструкции распределительных устройств.	ПК-1, ПК-6, ПК-9	современное электрооборудование и его характеристики, основные схемы электрических соединений электростанций и подстанций, особенности конструкций распределительных устройств разных типов	использовать полученные знания при освоении смежных дисциплин и в работе по окончании вуза	навыками проектирования и эксплуатации электрической части электростанций и подстанций, а также исследований физических процессов, происходящих в электрооборудовании при его работе	Деловая игра

4. Критерии и шкалы оценивания

4.1 Тест

Процент правильных ответов	До 60	61-80	81-100
Количество баллов за решенный тест	0	1	2

1.2 Презентация

Критерии оценки презентации	Максимальное количество баллов
Содержание (конкретно сформулирована цель работы, понятны задачи и ход работы, информация изложена полно и четко, сделаны аргументированные выводы)	2
Оформление презентации (единый стиль оформления; текст легко читается; фон сочетается с текстом и графикой; все параметры шрифта хорошо подобраны; размер шрифта оптимальный и одинаковый на всех слайдах; ключевые слова в тексте выделены; иллюстрации усиливают эффект восприятия текстовой части информации)	2
Эффект презентации (общее впечатление от просмотра презентации)	1
Максимальное количество баллов	5

1.3 Решение задач

- 2 балл выставляется, если студент решил все рекомендованные задачи, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 1 балла выставляется, если студент решил не менее 75% рекомендованных задач, правильно изложил все варианты решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 0 баллов выставляется, если студент решил не менее 50% рекомендованных задач, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).

1.4 Критерии оценки доклада

Баллы	Характеристики ответа студента			
5	- студент глубоко и всесторонне усвоил проблему;			
	- уверенно, логично, последовательно и грамотно его излагает;			
	- опираясь на знания основной и дополнительной литературы, тесно			
	привязывает усвоенные научные положения с практической деятельно-			
	стью;			
	- умело обосновывает и аргументирует выдвигаемые им идеи;			
	- делает выводы и обобщения;			
	- свободно владеет понятиями			
3	- студент твердо усвоил тему, грамотно и по существу излагает ее, опи-			
	раясь на знания основной литературы;			
	- не допускает существенных неточностей;			
	- увязывает усвоенные знания с практической деятельностью;			

	- аргументирует научные положения;			
	- делает выводы и обобщения;			
	- владеет системой основных понятий			
2	- тема раскрыта недостаточно четко и полно, то есть студент освоил			
	проблему, по существу излагает ее, опираясь на знания только основ-			
	ной литературы;			
	- допускает несущественные ошибки и неточности;			
	- испытывает затруднения в практическом применении знаний;			
	- слабо аргументирует научные положения;			
	- затрудняется в формулировании выводов и обобщений;			
	- частично владеет системой понятий			
0	- студент не усвоил значительной части проблемы;			
	- допускает существенные ошибки и неточности при рассмотрении ее;			
	- испытывает трудности в практическом применении знаний;			
	- не может аргументировать научные положения;			
	- не формулирует выводов и обобщений;			
	- не владеет понятийным аппаратом			

1.5 Оценка участия студента в деловой игре

Наименование критерия	Баллы
новизна и неординарность решения проблемы	2
участие в вопросах к оппонентам	12
участие в ответах на вопросы оппонентов	1
участие в качестве основного «спикера»	1
этика ведения дискуссии	1
Максимальное количество баллов	7
Штрафные баллы (нарушение правил ведения дискуссии, некорректность поведения и т.д.)	до 2

1.6 Подготовка опорного конспекта

Подготовка материалов опорного конспекта является эффективным инструментом систематизации полученных студентом знаний в процессе изучения дисциплины.

Составление опорного конспекта представляет собой вид внеаудиторной самостоятельной работы студента по созданию краткой информационной структуры, обобщающей и отражающей суть материала лекции, темы учебника. Опорный конспект призван выделить главные объекты изучения, дать им краткую характеристику, используя символы, отразить связь с другими элементами. Основная цель опорного конспекта облегчить запоминание. В его составлении используются различные базовые понятия, термины, знаки (символы) — опорные сигналы. Опорный конспект может быть представлен системой взаимосвязанных геометрических фигур, содержащих блоки концентрированной информации в виде ступенек логической лестницы; рисунка с дополнительными элементами и др.

Критерии оценки опорного конспекта	Максимальное количество баллов
- подготовка материалов опорного конспекта по изучаемым темам дисциплины только в текстовой форме;	5
- подготовка материалов опорного конспекта по изучаемым темам дисциплины в текстовой форме, которая сопровождается схемами,	10

табличной информацией, графиками, выделением основных мыслей с помощью цветов, подчеркиваний.

2. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1 Примерный тест:

- 1. К параметрам синхронного генератора не относится
- А) Коэффициент полезного действия
- В) Номинальный ток
- С) номинальная мощность
- D) Коэффициент мощности

Е) Коэффициент трансформации

- 2. Частота вращении турбогенератора, при числе пар полюсов p=2
- А) 750 об/мин
- В) 300 об/мин
- С) 1500 об/мин
- D) 3000 об/мин
- Е) 1000 об/мин
- 3. На напряжение до 1000 В не применяются
- А) Рубильники
- В) Предохранители
- С) Контакторы

D) Силовые выключатели

- Е) Переключатели
- 4. На напряжение до 1000В применяются следующие аппараты
- А) Разъединители

В) Автоматические выключатели

- С) Короткозамыкатели
- D) Отделители
- Е) Разрядники
- 5. Расцепители являются основными элементами конструкции
- А) Рубильников
- В) Переключателей
- С) Контакторов
- D) Магнитных пускателей

Е) Автоматических воздушных выключателей

- 6. Трансформаторы тока не выбирают по следующему условию
- А) по классу точности
- В) по току
- С) по вторичной нагрузке
- D) по напряжению

Е) по отключающей способности

- 7. Недостатком вакуумных выключателей является:
- А) отсутствие шума при операциях
- В) низкая надежность
- С) сложность конструкции
- D) загрязнение окружающей среды

Е) возможность коммутационных перенапряжений

5.2 Пример задачи

Выбрать реактор для ограничения мощности на шинах ГПП. Ток и мощность КЗ без реактора, вычисленные при Se=50 MBA, Ue=6,3 кВ, Ie=4,55 кА на шинах подстанции равны 4-0=1-6,35 кА, S-02=70 MBA.

Приведенное к базисным условиям относительное сопротивление от источника питания до точки КЗ Х-6,рез=0,72. Приведенное время протекания КЗ tup=1,0 сек. Расчетный ток Ір, =0,4 кА; Uном, у=6,3 кВ. При установке реактора мощность КЗ предполагается снизить до \$ 100.0=50 МВА.

Решение. По расчетному току нагрузки и номинальному напряжению предварительно выбираем реактор РБА-6-400 (см. табл.П.10.2), Інр=0,4 кА.

По формуле (7.2) определим результирующее сопротивление цепи К3 $X_{*6,pes}^* = \frac{S_6}{S_{town,o}} = \frac{50}{50} = 1.$

$$X'_{\text{*6,per}} = \frac{S_6}{S_{\text{NOM-0}}} = \frac{50}{50} = 1$$

Базисное сопротивление реактора согласно (7.3):

$$X_{*6,p} = X'_{*6,pcs} - X_{*6,pcs} = 1 - 0.72 = 0.28.$$

Индуктивное сопротивление реактора при его номинальных параметрах по (7.4)

$$X_{p,pacq} \% = X_{*6p} \frac{I_{M,p}}{I_6} \cdot \frac{U_{M,y}}{U_{M,p}} \cdot 100 = 0.28 \frac{0.4}{4.55} \cdot \frac{6.3}{6.0} \cdot 100 = 2.58\%.$$

Выбираем реактор РБА-6-400-4 (см.табл.П.10.2) с параметрами Хо%=4, I_{спек}=34,0 кА, I_{5к.т.у}=39,3 кА. Проверим выбранный реактор по остаточному напряжению на шинах подстанции:

$$U_{\text{OCT}} = X_{\text{HOM.p}} \% \frac{I_{1=0}}{I_{\text{H.p.}}} = 4 \cdot \frac{6,35}{0,4} = 63,5\% > 60\%.$$

Определим ударный и установившийся ток КЗ за реактором

$$I_{t=0} = \frac{S_6}{\sqrt{3}U_6 X_{*0,pes}} = \frac{50}{\sqrt{3} \cdot 6, 3 \cdot 1} = 4,55 \text{ kA};$$

$$i_v = \sqrt{2} \cdot K_v \cdot I_{t=0} = \sqrt{2} \cdot 1,8 \cdot 4,55 = 11,6 \text{ kA}.$$

Согласно п.6.1 с преобладанием Х Ку=1,8.

Проверяем электродинамическую устойчивость по (7.6):

Так как система имеет неограниченно большую мощность, то

Проверим термическую устойчивость реактора к токам КЗ по (7.7)

$$I_{SH,T,y} = 39,3 > I_{t=\infty} \sqrt{\frac{t_n}{5}} = 4,55 \sqrt{\frac{1}{5}} = 2,4 \text{ KA}.$$

Выбранный реактор отвечает всем требованиям.

5.3 Примерные темы презентаций

- 1. Сдвоенные реакторы, особенности сдвоенных реакторов.
- 2. Разъединители: назначение, обозначения, приводы разъединителей.
- 3. Способы гашения дуги постоянного и переменного токов.
- 4. Высоковольтные предохранители: назначение, обозначения.
- 5. Силовые выключатели, элегазовые, вакуумные, воздушные.

5.4 Примерные темы докладов

- 1. Процесс производства электроэнергии на ТЭС
- 2. Балансы активных и реактивных мощностей
- 3. Режимы работы нейтралей
- 4. Синхронные генераторы.
- 5. Синхронные компенсаторы
- 6. Силовые (авто) трансформаторы

- 7. Электрические аппараты
- 8. Схемы электроустановок. Собственные нужды
- 9. Конструкции распределительных устройств
- 10. Структурные схемы.
- 11. Продолжительные режимы
- 12. Силовые (авто)трансформаторы
- 13. Расчет приведенных затрат
- 14. Режимы работы оборудования
- 15. Электрические аппараты
- 16. Токоведущие части. Измерительная подсистема
- 17. Конструкции распределительных устройств
- 18. Управление электрическими аппаратами

5.5 Деловая игра. Примерные темы деловой игры:

- 1. Перспективы развития энергетики.
- 2. Способы гашения дуги постоянного и переменного токов.
- 3. Нетрадиционные и возобновляемые источники электроэнергии.

5.6 Вопросы промежуточной аттестации (к экзамену)5 семестр

- 1. Перспективы развития энергетики.
- 2. Классификация электрических станций. Их основные энергетические показатели.
- 3. Классификация подстанций.
- 4. Структура энергосистемы.
- 5. Нетрадиционные и возобновляемые источники электроэнергии.
- 6. Высоковольтные токопроводы и их конструкция.
- 7. Проверка питающих линий на корону.
- 8. Изоляторы: классификация, материал изоляторов, выбор изоляторов и их проверка.
- 9. Реакторы: назначение, обозначение.
- 10. Сдвоенные реакторы, особенности сдвоенных реакторов.
- 11. Схемы включения реакторов.
- 12. Разъединители: назначение, обозначения, приводы разъединителей.
- 13. Способы гашения дуги постоянного и переменного токов.
- 14. Высоковольтные предохранители: назначение, обозначения.
- 15. Выключатели: классификация выключателей, требования, предъявляемые к выключателям.
- 16. Выключатели нагрузки: назначение, обозначение.

5.7 Вопросы промежуточной аттестации (к экзамену) 6 семестр

- 1. Силовые выключатели, элегазовые, вакуумные, воздушные.
- 2. Измерительные трансформаторы тока, напряжения. Назначение, обозначение.
- 3. Измерительные трансформаторы тока, марки, схемы включения.
- 4. Измерительные трансформаторы напряжения, погрешности, марки, схемы включения.
- 5. Схемы электрических соединений станций, подстанций, требования, предъявляемые к схемам электрических присоединений.
- 6. Однолинейная система сборных шин, область применения.
- 7. Схема с двумя системами сборных шин.
- 8. Схема с одной рабочей и обходной системой сборных шин.
- 9. Схема с двумя рабочими и обходной системой сборных шин.
- 10. Схема с двумя системами шин и тремя выключателями на две цепи.
- 11. Главные схемы подстанций.

- 12. Собственные нужды станций и подстанций. Основные требования и источники электроснабжения.
- 13. Схема собственных нужд ТЭЦ.
- 14. Схема собственных нужд КЭС.
- 15. Схема электроснабжения собственных нужд ГЭС.
- 16. Схема электроснабжения собственных нужд подстанций