Приложение 2 к РПД Эксплуатация карьерного оборудования Специальность- 21.05.04 Горное дело Специализация №3Открытые горные работы Форма обучения — очная Год набора - 2014

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	1. Кафедра Горного дела, наук о Земле и природообус					
2.	Специальность	21.05.04 Горное дело				
3.	Специализация	№3 Открытые горные работы				
4.	Дисциплина (модуль)	Эксплуатация карьерного оборудования				
5.	Форма обучения	очная				
6.	Год набора	2014				

2. Перечень компетенций

- способностью выбирать и (или) разрабатывать обеспечение интегрированных технологических систем эксплуатационной разведки, добычи и переработки твердых полезных ископаемых, а также предприятий по строительству и эксплуатации подземных объектов техническими средствами с высоким уровнем автоматизации управления (ОПК-8):
- готовностью осуществлять техническое руководство горными и взрывными работами при эксплуатационной разведке, добыче твердых полезных ископаемых, строительстве и эксплуатации подземных объектов, непосредственно управлять процессами на производственных объектах, в том числе в условиях чрезвычайных ситуаций (ПК-4);
- владением знаниями процессов, технологий и механизации открытых горных и взрывных работ (ПСК-3.2).

1. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования компетенции	Формируемая	Критерии	Критерии и показатели оценивания компетенций					
(разделы, темы дисциплины)	компетенция	Знать:	Уметь:	Владеть:	сформированности компетенций			
1. Классификация горных машин для открытых горных работ.	ОПК-8 ПСК-3.2	эксплуатационные свойства горных машин и их комплексов.	правильно выбирать средства механизации открытых горных работ; пользоваться специальной технической и справочной	навыками анализа горногеологических условий;	Задание на понимание терминов			
2. Буровые машины.	ОПК-8 ПК-4 ПСК-3.2	параметры технического состояния карьерного оборудования; эксплуатационные свойства горных машин и их комплексов; основы конструирования, эксплуатации, сборки и консервации горных машин	литературой. составлять планы эксплуатации парка карьерного оборудования; определять необходимое количество эксплуатационных и расходных материалов; пользоваться специальной технической и справочной	правилам эксплуатации технических комплексов; методологией конструирования и сборки карьерного оборудования.	Групповая дискуссия, решение задач			
3. Выемочно-погрузочные машины.	ОПК-8 ПСК-3.2 ПК-4	и оборудования. параметры технического состояния карьерного оборудования; эксплуатационные свойства горных машин и их комплексов; основы конструирования, эксплуатации, сборки и консервации горных машин и оборудования.	литературой. составлять планы эксплуатации парка карьерного оборудования; определять необходимое количество эксплуатационных и расходных материалов; пользоваться специальной технической и справочной литературой.	правилам эксплуатации технических комплексов; методологией конструирования и сборки карьерного оборудования.	Расчетно-графическое задание			
4. Выемочно-транспортирующие машины.	ОПК-8 ПК-4 ПСК-3.2	параметры технического состояния карьерного оборудования; основы конструирования, эксплуатации, сборки и консервации горных машин и оборудования.	составлять планы эксплуатации парка карьерного оборудования; определять необходимое количество эксплуатационных и расходных материалов; пользоваться специальной технической и справочной	правилам эксплуатации технических комплексов; методологией конструирования и сборки карьерного оборудования.	Групповая дискуссия, тест			

			литературой.		
5. Транспортные машины и комплексы.	ОПК-8 ПК-4 ПСК-3.2	параметры технического состояния карьерного оборудования; основы конструирования, эксплуатации, сборки и консервации горных машин и оборудования.	составлять планы эксплуатации парка карьерного оборудования; определять необходимое количество эксплуатационных и расходных материалов; пользоваться специальной технической и справочной литературой.	правилам эксплуатации технических комплексов; методологией конструирования и сборки карьерного оборудования.	Расчетно-графическое задание
6. Силовое оборудование горных машин.	ОПК-8 ПК-4 ПСК-3.2	параметры технического состояния карьерного оборудования; основы конструирования, эксплуатации, сборки и консервации горных машин и оборудования.	составлять планы эксплуатации парка карьерного оборудования; определять необходимое количество эксплуатационных и расходных материалов; пользоваться специальной технической и справочной литературой.	правилам эксплуатации технических комплексов; методологией конструирования и сборки карьерного оборудования.	Задание на понимание терминов
7. Стационарные установки.	ОПК-8 ПК-4 ПСК-3.2	параметры технического состояния карьерного оборудования; основы конструирования, эксплуатации, сборки и консервации горных машин и оборудования.	составлять планы эксплуатации парка карьерного оборудования; определять необходимое количество эксплуатационных и расходных материалов; пользоваться специальной технической и справочной литературой.	правилам эксплуатации технических комплексов; методологией конструирования и сборки карьерного оборудования.	Задание на понимание терминов
8. Техническое обслуживание и ремонт карьерного оборудования.	ОПК-8 ПК-4 ПСК-3.2	параметры технического состояния карьерного оборудования; основы конструирования, эксплуатации, сборки и консервации горных машин и оборудования.	составлять планы эксплуатации парка карьерного оборудования; определять необходимое количество эксплуатационных и расходных материалов; пользоваться специальной технической и справочной литературой.	навыками по технической диагностике и сервису карьерного оборудования; правилам эксплуатации технических комплексов; методологией конструирования и сборки карьерного оборудования.	Решение задач, тест

2. Критерии и шкалы оценивания

4.1 Решение задач

- 7 баллов выставляется, если студент решил все рекомендованные задачи, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 4 баллов выставляется, если студент решил не менее 85% рекомендованных задач, правильно изложил все варианты решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 2 балла выставляется, если студент решил не менее 65% рекомендованных задач, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 0 баллов если студент выполнил менее 50% задания, и/или неверно указал варианты решения.

4.2 Тест

Процент правильных ответов	До 60	61-80	81-100
Количество баллов за ответы	1	2	3

4.3 Задание на понимание терминов (терминологический тест)

Процент правильных ответов	До 60	61-80	81-100
Количество баллов за решенный тест	1	2	4

4.4 Расчетно-графическое задание

Баллы	Критерии							
10	- в задании в полной мере отражены все вопросы и решения, связанные с расчетом							
	данной задачи;							
	- структура и содержание работы соответствует предъявляемым требованиям;							
	- графическая часть содержит необходимые данные для расчетов параметров и							
	показателей проекта;							
	- студент четко и правильно отвечает на поставленные преподавателем вопросы;							
	 правильно выводит необходимые расчетные формулы и зависимости. 							
7	- в работе в полной мере отражены все вопросы и решения, связанные с расчетом							
	данной задачи;							
	- структура и содержание работы не в полной мере соответствует предъявляемым							
	требованиям;							
	– работа содержит незначительные ошибки или неточности;							
	- ответы студента на поставленные преподавателем вопросы содержат							
	незначительные неточности и погрешности.							
3	- в работе не в полной мере отражены все вопросы и решения, связанные с							
	решением данной задачи;							
	– работа содержит незначительные ошибки или неточности;							
	– студент неуверенно отвечает на поставленные преподавателем вопросы;							
	- допускает существенные неточности, ошибается в определениях и выводах							
	соотношений.							
1	- в работе не отражены все вопросы и решения, связанные с данной задачей;							
	-содержание пояснительной записки не соответствует предъявляемым							

требованиям;

- -графическая и расчетная части не выполнена в полном объёме;
- работа содержит значительные ошибки или неточности;
- -студент затрудняется при ответах на поставленные вопросы, допускает принципиальные ошибки в письменных расчетах, не может сформулировать важные определения и наименования при ответах на вопросы, не самостоятельно выполнил данную работу.

4.5 Групповая дискуссия (устные обсуждения проблемы или ситуации)

Критерии оценивания	Баллы
 • обучающийся ориентируется в проблеме обсуждения, грамотно высказывает и обосновывает свои суждения, владеет профессиональной терминологией, осознанно применяет теоретические знания, материал излагает логично, грамотно, без ошибок; • при ответе студент демонстрирует связь теории с практикой. 	4
 обучающийся грамотно излагает материал; ориентируется в проблеме обсуждения, владеет профессиональной терминологией, осознанно применяет теоретические знания, но содержание и форма ответа имеют отдельные неточности; ответ правильный, полный, с незначительными неточностями или недостаточно полный. 	3
 • обучающийся излагает материал неполно, непоследовательно, допускает неточности в определении понятий, не может доказательно обосновать свои суждения; • обнаруживается недостаточно глубокое понимание изученного материала. 	2

3. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1 Типовое задание на понимание терминов

Ниже приводятся определения важнейших терминов по данной теме. Выберите правильное определение для каждого термина из списка:

- 1. Теоретическая производительность экскаватора
- 2. Техническая производительность экскаватора
- 3. Коэффициент готовности оборудования
- 4. Номинальная (расчетная) вместимость ковша
- 5. Надежность оборудования
- 6. Карьерный транспорт
- 7. Экскаваторно-автомобильный комплекс
- 8. Коэффициент технического использования
- 9. Безопасность машины
- 10.Драглайн

- а. комплекс сооружений и устройств для перемещения (транспортирования) горных масс при открытой разработке месторождений.
- b. более полная характеристика ремонтопригодности объекта, так как он учитывает как плановые, так и непредусмотренные остановки объектов.
- с. свойство, обеспечивающее устранение или сведение к минимуму последствий аварийных ситуаций.
 - d. часть суммарной вместимости ковша и подковшового пространства.
- е. максимальная производительность для данного экскаватора при непрерывной экскавации пород с конкретными физико-механическими свойствами.
- f. объем породы, вырабатываемый при непрерывной работе экскаватора в единицу времени.
- g. вероятность того, что оборудование будет находиться в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение оборудования по назначению не предусматривается.
 - h. функция случайной величины, в течение которой не будут происходить поломки.
- і. совокупность машин, состоящая из погрузочного и транспортных средств, связанных технологически между собой во времени и пространстве.
- j. самоходная выемочно-погрузочная машина на шагающем (реже гусеничном) ходу, у которой ковш гибко связан со стрелой и поворотной платформой.

Ключ: 1-f, 2-e, 3-g, 4-d, 5-h, 6-a, 7-i, 8-b, 9-c, 10-j.

5.2 Пример решения задачи

Задание: Определить годовую производительность одноковшового экскаватора ЭКГ-8И при непрерывной трехсменной работе в карьере с производительностью по руде 12 млн.т/год (плотность руды γ_D =2,8 т\м³). Высоту уступа принять равной 20 м.

Решение:

В таблице 1 представлены основные параметры экскаватора, необходимые ддля расчета производительности.

Таблица 1 – Основные параметры экскаватора.

Показатели	
Марка экскаватора	ЭКГ-8И
E – Емкость ковша, м ³	8
$R_{_{q,y_{.}}}$ – Радиус черпания на горизонте установки экскаватора, м	13,5
$R_{_{\mathrm{u.max}}}$ – Максимальный радиус черпания, м	19,8
$H_{_{q,\max}}$ – Максимальная высота черпания, м	17,6
H_p – высота разгрузки, м	7,7
$H_{p,\mathrm{max}}$ – высота разгрузки при наибольшей высоте, м	12,5
R_p – радиус разгрузки, м	17,0
R_{cem} – мощность сетевого двигателя, кВт	630
$t_{_{\it{U}}}$ – время цикла, сек	28

1. Паспортная производительность экскаватора:

$$Q_n=3600 \times E/t_u$$
, M^3/vac
 $Q_n=3600 \times 8/28=1028 M^3/vac$,

2. Техническая (часовая) производительность:

$$Q_{\rm q} = {}^{\rm Q}_{\rm n} \times k_{\rm n}/k_{\rm n} \times k_{\rm H}/k_{\rm p} \times k_{\rm r\kappa} \times k_{\rm vo}$$
, ${\rm M}^3/{\rm qac}$

где k_n - коэффициент цикла (1,0 при 90°, 0,9 при 135° и 0,8 при 180°);

 k_n – коэффициент породы (0,9 – для песчаников и песков, 1,0 – для глинистых ГП,

1,15 – для полускальных, 1,0 для хорошо и 1,4 для плохо взорванных $\Gamma\Pi$);

 k_H – коэффициент наполнения ковша (от 0,5 для тяжелых скальных пород до 1,1 для песка, в нашем случае для вскрышных пород k_H =0.7, для руды k_H =0.6);

 k_p — коэффициент разрыхления породы в ковше (от 1,1 для песка до 1,5 для плотных известняков, для скальных — 1,4);

 $k_{r\kappa}$ – коэффициент геометрии копания (1,0 – для мехлопат, работающих по принципу совковых лопат, и 1,25 – для гидравлических экскаваторов, работающих по принципу штыковых лопат);

 k_{yo} – коэффициент (учета) удлиненного оборудования мехлопат (1,0 – для базовых моделей и 1,2 – для моделей с удлиненным оборудованием).

$$Q_{y} = 1028 \times 0.9/1.2 \times 0.6/1.4 \times 1.0 \times 1.2 = 397 \text{ m}^{3}/\text{yac}$$

3. Сменная производительность:

$$Q_{cM} = Q_{q} \times T_{cM} \times k_{MB} \times k_{oo} \times k_{yk}, \, M^3/cMeHy.$$

где $T_{cm} = 8$ часов – время смены,

 $k_{\text{ив}}$ – коэффициент использования рабочего времени (приложение 19), для средней организации работ и тупиковой схемы подачи автотранспорта $k_{\text{ив}}$ =0,6;

 k_{00} – коэффициент основных операций (0,85÷0,9), принимаем 0,85.

 k_{vk} – коэффициент управления качеством руд (1,0 – для вскрыши, 0,6÷0,8 – для руд).

$$Q_{cm} = 397 \times 8 \times 0.55 \times 0.85 \times 0.8 = 1043 \text{ m}^3/\text{cmeHy},$$

4. Месячная производительность:

$$\mathbf{Q}_{\text{мес}} = \mathbf{Q}_{\text{см}} \times \mathbf{n}_{\text{см}} \times \mathbf{k}_{\text{тг}} \times \mathbf{k}_{\text{сез}} \times \mathbf{k}_{\text{тр}}$$
, м 3 /месяц

где $n_{cm} = (30-4) \times 3 = 78$ смен - количество смен работы в месяц за вычетом взрывных дней.

 $k_{\mbox{\tiny III}}$ - коэффициент технической готовности (0,8-0,9 для нового и 0,55-0,65 для изношенного оборудования);

 k_{ces} - сезонный коэффициент (0,8 зимой и 1,0 летом, в среднем за год – 0,9);

 $k_{\rm TP}$ - коэффициент транспорта (1,0 - для автотранспорта, 0,9 - для конвейерного транспорта, 0,8 - для железнодорожного транспорта)

$$Q_{\text{Mec}} = 1.04 \times 10^3 \times 78 \times 0.8 \times 0.9 \times 1.0 = 65 \times 10^3 \,\text{м}^3/\text{месяц},$$

5. Годовая производительность:

$$Q_{rod} = Q_{mec} \times 12 \times k_{ro}$$

где 12 – число месяцев работы в год.

 ${
m k}_{{
m TO}}$ – коэффициент (учета времени) технического обслуживания

$$Q_{\text{год}} = 65 \times 10^3 \times 12 \times 0,89 = 692 \times 10^3 \text{ м}^3/\text{год} = 0,69 \text{ млн. м}^3/\text{год}$$

Ответ: $Q_{rog} = 0,69 \text{ млн. } \text{м}^3/\text{год.}$

5.3 Расчетно-графическое задание «Расчет основных показателей работы одноковшовых экскаваторов»

Цель работы - ознакомиться с методикой расчета основных показателей работы одноковшовых экскаваторов:

- определить линейные размеры и массу элементов рабочего оборудования;
- произвести статистический расчет;
- произвести тяговый расчет.

Определение линейных размеров и масс основных элементов рабочего оборудования одноковшовых экскаваторов

<u>Линейные размеры (в метрах) ковшей</u> механических лопат и драглайнов — ширина Bi, длина — Li и высота hi, а также их масса mi (т) приближенно могут быть определены в функции их вместимости $E(M^3)$ по следующим зависимостям:

• для мехлопат

$$B_{KJ}=1,2^{-3}\sqrt{E}$$
,

$$L_{\text{KJI}} = 0,77 \ B_{\text{KJI}},$$

$$h_{\rm KJI} = 0.75 \ B_{\rm KJI}$$

$$m_{\text{KJI}} = K_K \times E$$
;

• для драглайнов

$$B_{KJ} = 1.15^{-3} \sqrt{E}$$
,

$$L_{\text{KД}}=1,2~B_{\text{KД}},$$

$$h_{\rm KJI} = 0.65 \; B_{KJJ}$$

$$m_{KJ} = K_1 (K_2 + E) \times E^{2/3},$$

где K_K — коэффициент тары ковша с подвеской (1÷1,4 для легких, 1,3÷1,9 для средних и 1,6÷2,4 для тяжелых пород), т/м³; K_I и K_2 — коэффициенты пропорциональности (0,143 и 9,6 для легких, 0,0921 и 20 для средних и 0,046 и 40,6 для тяжелых пород).

Масса породы в ковше (т) определяется по формуле:

$$m_{\Pi} = E \times \gamma / K_{P}$$
.

Значения у и КР приведены в табл.1.

Для драглайнов концевую нагрузку в подъемном канате $G_{K+\Pi}(\kappa H)$ можно определить по зависимости:

$$G_{K+\Pi} = g (m_K + m_\Pi) = 315E$$

Масса стрелы с блоками $m_{\rm C}({\rm T})$ мехлопаты или драглайна, а также масса напорного механизма карьерной мехлопаты $m_{\rm H}({\rm T})$ могут быть определены в функции массы экскаватора $m_{\rm H}({\rm T})$ по зависимости вида:

$$m_i = Km \times m_{\ni}$$

где Km — коэффициент массы (табл.2); m_{\Im} — масса экскаватора.

Масса одноковшового экскаватора m_{\Im} (т) в первом приближении может быть определена и по зависимости вида:

$$m_{\Theta} = K_{\Theta} \times E$$

где K_{9} — коэффициент металлоемкости, т/м 3 (для карьерных лопат с $E=2\div20$ м 3 — $38\div55$, для вскрышных лопат с $E=6\div100$ м 3 — $50\div120$).

Таблица 1

Значения коэффициентов K_p и K_{nym}

Показатели	Категория породы			
	I	II	III	IV

отность породы в целике γ , т/м ³	1,5÷1,8	1,8÷2,5	2,5÷3,5	3,0÷3,5
эффициент разрыхления K_p	,1÷1,15	1,25	1,3	,3÷1,37
эффициент $K_{nym}=l_{H}/l_{\kappa}$	2,5÷3,0	3,5	4	5,5

Таблица 2

Значения коэффициента Кт

Тип экскаватора	Стрела с блоками	Механизм напора			
рьерная мехлопата	0,07÷0,06	0,025÷0,026			
крышная лопата	0,08÷0,07	0,023÷0,014			
аглайн	0,07÷0,06	-			

Статический расчет экскаватора

Выбор противовесов

Силу тяжести противовеса G_n определяют при положении «конец копания», соответствующего моменту, когда ковш с грунтом выйдет из забоя. Момент сил берут относительно переднего катка. Рукоять максимально подтянута к стреле при ее наклоне к горизонту α =60°.

$$G_{n} = \frac{G_{p}l_{p} + G_{c}l_{c} + G_{\kappa+e}l_{k} - G_{1}l_{1}}{l_{n}}$$

Для определения силы тяжести максимального противовеса рассматривают положение «начало копания». Ковш опирается на грунт. Силы тяжести ковша, рукояти и половину силы тяжести стрелы при расчете не учитывают. Момент сил берут относительно заднего опорного катка.

$$G_n = \frac{G_c l_c - G_1 l_1}{l_n}$$

Определение устойчивости экскаватора

Устойчивость проверяют при положении рабочего оборудования поперек гусениц, при моменте сил относительно точки А.

$$\begin{split} &\text{Находим } \sum \boldsymbol{M}_{onp} \\ &\sum \boldsymbol{M}_{onp} = \boldsymbol{G}_{p}\boldsymbol{l}_{p} + \boldsymbol{G}_{c}\boldsymbol{l}_{c} + \boldsymbol{G}_{k}\boldsymbol{l}_{k} + \boldsymbol{G}_{01}\boldsymbol{l}_{1} \\ &\text{Находим } \sum \boldsymbol{M} \\ &\sum \boldsymbol{M} = \boldsymbol{G}_{n}\boldsymbol{l}_{n} + \boldsymbol{G}_{1}\boldsymbol{l}_{1} \\ &\boldsymbol{K}_{y\partial} = \frac{\sum \boldsymbol{M}_{y\partial}}{\sum \boldsymbol{M}_{onp}} \end{split}$$

Необходимое условие: $K_{y\delta} \ge 1,15$.

Тяговый расчет

Сопротивление возникающее при движении экскаватора S_T^{max} , должно преодолеваться тяговым усилием, созданным двигателем на ведущих колесах тележки.

$$S_{\scriptscriptstyle T}^{\,\rm max} \geq W_{\scriptscriptstyle BH} + W_{\scriptscriptstyle \varGamma P} + W_{\scriptscriptstyle U} + W_{\scriptscriptstyle n} + W_{\scriptscriptstyle \kappa p} + W_{\scriptscriptstyle B}$$

где $W_{\it BH}$ - внутреннее сопротивление сил трения в ходовых механизмах, кг·с; $W_{\it BH}\approx (0.048\div 0.091)G_{_9}=0.07G_{_9}$; $W_{\it \Gamma P}$ - сопротивление вызванное деформацией грунта $W_{\it \Gamma P}=K_{\it c}G_{_9}=(0.05-0.1)G_{_9}=0.07G_{_9}$; $W_{\it U}$ - сопротивление сил инерции $W_{\it U}=(0.01-0.02)G_{_9}$; $W_{\it n}$ - сопротивление при движении на подъем $W_{\it n}=G_{_9}\sin\varphi$; $W_{\it B}$ - сопротивление силы ветра $W_{\it B}=K_{\it B}\cdot F_{_9}$; $K_{\it B}$ - удельная нагрузка, кгс/м[;] $F_{\it 9}$ - площадь экскаватора (лобовая).

Для определения мощности двигателя на горизонтальном участке

$$W_2^p = W_{\Gamma P} + W_{BH} + W_{\kappa p}$$

При движении на подъем

$$W_n^p = W_{\Gamma P} + W_{RH} + W_{\Pi}$$

По наибольшему значению рассчитываем мощность двигателя

$$N_{\partial} = \frac{W^{p} \cdot U_{p.9.}}{270 \cdot \eta_{xo\partial}}$$

где $U_{p.9.}$ – расчетная скорость движения, η_{xod} - КПД ходового механизма = 0,6÷0,65.

5.4 Пример тестового задания

- 1. Станки вращательного бурения шарошечными долотами с очисткой скважины воздухом:
 - а) СБУ;
 - b) СБШ;
 - с)СБР.

Ответ: b

- 2. Для пород какой крепости используются станки вращательного бурения резцовыми коронками?:
 - a) $1 \div 6$;
 - b) $6 \div 18$;
 - $c)10 \div 20;$
 - d) $8 \div 14$.

Ответ: а

- 3. При бурении каких пород применяют долота типа К и ТК?:
 - а) мягких;
 - b) мягких абразивных;
 - с)средней твердости;
 - d) крепких и твердых.

Ответ: d

- 4. Вооружение шарошек долот типа М, С, Т:
 - а) твердосплавные зубки с клиновидной формой рабочей поверхности;
 - b) фрезерованные в теле шарошек зубья;
 - с)зубки с полусферической рабочей головкой;
 - d) твердосплавные зубки с плоскими торцами.

Ответ: b

- 5. Для какого диаметра скважин используют станки пневмоударного бурения?:
 - a) 171 251 mm;

```
b) 256 – 311 мм;
c)89 – 165 мм;
d) 273 – 444 мм
Ответ: с
```

- 6. Предназначение буровой штанги:
 - а) подача сжатого воздуха;
 - b) очистка скважины;
 - с)пылеулавливание;
 - d) передача кругящегося момента от вращателя к долоту.

Ответ: d

- 7. Число буровых штанг в комплекте станка СБУ-125-32:
 - a) 30:
 - b) 8;
 - c)14;
 - d) 22.

Ответ: с

- 8. Станки какой фирмы представлены семейством сверхлегких станков на гусеничном ходу с дизельным приводом для бурения крепких пород:
 - а) «Атлас-Копко» Швеция;
 - b) «Дрилтех» США;
 - с)«Тамрок» Финляндия;
 - d) «Хаусхерр» Германия.

Ответ: а

- 9. Долота для ударно-вращательного бурения подразделяются на:
 - а) двухперые и двухлучевые;
 - b) с несъемными резцами и со сменными резцами;
 - с)лезвийные и штыревые;
 - d) со сплошной режущей кромкой и с прерывистой режущей кромкой

Ответ: с

- 10. Какую длину штанги применяют для станков шнекового бурения:
 - a) 950 1230 mm;
 - b) 4000 mm;
 - с)7600 9100 мм;
 - d) 1800 -8190 мм.

Ответ: d

5.5 Примерные вопросы для групповой дискуссии

- 1. Какие типы долот шарошечного бурения существуют?
- 2. Какой размер буровой штанги у станка СБШ-250 МНА-32?
- 3. Как осуществляется очистка скважины от буровой мелочи?
- 4. Какие технологические схемы работы погрузчиков существуют?
- 5. Как устанавливается вместимость ковша скрепера?

5.6 Вопросы к экзамену:

- 1. Общие сведения о карьерном оборудовании, основы теории горных машин.
- 2. Виды комплексов карьерного оборудования их классификация и особенности.

- 3. Показатели качества оборудования. Классификация эксплуатационных свойств карьерного оборудования.
- 4. Эргономические, эстетические, технологические, патентно-правовые, экологические и экономические свойствах горных машин.
- 5. Техническое состояние карьерного оборудования и причины его изменения. Признаки технического состояния.
- 6. Параметры технического состояния. Номинальное и предельное технические состояния оборудования. Остаточный ресурс оборудования.
- 7. Факторы, влияющие на изменение технического состояния карьерного оборудования. Конструктивные, технологические и эксплуатационные факторы.
- 8. Показатели теории надежности. Безотказность, долговечность и ремонтопригодность карьерного оборудования.
- 9. Поддержание и восстановление работоспособности карьерного оборудования в процессе его эксплуатации.
- 10. Определение уровня работоспособности карьерного оборудования в произвольный момент времени.
- 11. Область применения буровых станков и экскаваторов. Условия эксплуатации.
- 12. Транспортирование, монтаж, обкатка буровых станков и экскаваторов.
- 13. Виды технических обслуживаний экскаваторов и буровых станков.
- 14. Техника безопасности при эксплуатации экскаваторов и буровых станков.
- 15. Техническая эксплуатация и обслуживание выемочно-транспортирующих машин.
- 16. Транспортирование, монтаж, приемка, обкатка, хранение выемочно-транспортирующих машин.
- 17. Техника безопасности при работе с выемочно-транспортирующими машинами.
- 18. Условия эксплуатации и устройство железнодорожных путей. Текущее содержание и ремонт железнодорожных путей.
- 19. Условия эксплуатации локомотивов и вагонов в карьерах. Структура железнодорожного эксплуатационного хозяйства карьера.
- 20. Техническая эксплуатация и ремонт подвижного состава при карьерном железнодорожном транспорте.
- 21. Выбор основных параметров локомотивного и вагонного депо. Организация эксплуатационных устройств карьерных локомотивов.
- 22. Карьерные автодороги. Содержание и ремонт дорог в карьерах.
- 23. Условия эксплуатации автосамосвалов в карьерах и требования к их конструкции. Надежность самосвала и срок его службы.
- 24. Техническая эксплуатация и ремонт карьерных автосамосвалов.
- 25. Структура карьерного автохозяйства. Определение основных параметров автомобильного хозяйства.
- 26. Условия эксплуатации конвейеров в карьере и их надежность.
- 27. Монтаж ленточных конвейеров в карьере. Стыковка лент. Передвижка конвейеров.
- 28. Техническое обслуживание и ремонт конвейеров.
- 29. Условия эксплуатации гидрооборудования и его надежность. Транспортировка, монтаж драг и гидромониторов.
- 30. Техническое обслуживание и эксплуатация гидромониторов, во- допроводов и пульпопроводов.
- 31. Гидравлическое испытание трубопровода. Срок службы трубо- провода. Мероприятия по обслуживанию средств гидромеханизации.
- 32. Техническое обслуживание и эксплуатация драг. Правила без- опасности при работе на воде.
- 33. Системы технического обслуживания и ремонта. Цели проведения технических обслуживаний и ремонтов.
- 34. Планово-предупредительная система технического обслуживания и ремонта. Принципы

и стратегия системы.

- 35. Коэффициент технической готовности парка карьерного оборудования.
- 36. Направления совершенствования системы планово-предупредительного ремонта.
- 37. Процесс технического диагностирования карьерного оборудования.
- 38. Системы и объекты диагностирования. Методы технического диагностирования.
- 39. Этапы процесса диагностирования. Схема диагностических средств.
- 40. Сервисное обслуживание оборудования на горнодобывающих предприятиях. Преимущества и недостатки обслуживания.
- 41. Техническое обслуживание карьерного оборудования. Преимущества и недостатки обслуживания.
- 42. Назначение, область применения, классификация передвижных мастерских. Диагностические лаборатории.

ТЕХНОЛОГИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ.

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА 21.05.04Горное дело

специализация № 3 «Открытые горные работы»

(код, направление, профиль)

ТЕХНОЛОГИЧЕСКАЯ КАРТА

Шифр дисциплины по РУП Б1.В.ОД.3											
Дисциплина Эксплуатация карьерного оборудования											
Курс	Курс 4 семестр 8										
Кафедр	Кафедра горного дела, наук о Земле и природообустройства										
Ф.И.О.	препо	давателя	, звание	, должнос	гь Н	Наговиці	ын (Элег Владі	имирович,	к.т.н	., доцент
Общ. тру	Общ. трудоемкость _{час/ЗЕТ} 108/3 Кол-во семестров 1 Форма контроля Экзамен 36/36										
ЛК _{общ./тек. сем.} 32/32 ПР _{общ./тек}			гек. сем.	16/16	ЛБ _{общ./те}	к. сем.	-/-	СРС общ./те	к. сем.	24/24	

Компетенции обучающегося, формируемые в результате освоения дисциплины:

- способностью выбирать и (или) разрабатывать обеспечение интегрированных технологических систем эксплуатационной разведки, добычи и переработки твердых полезных ископаемых, а также предприятий по строительству и эксплуатации подземных объектов техническими средствами с высоким уровнем автоматизации управления (ОПК-8);
- готовностью осуществлять техническое руководство горными и взрывными работами при эксплуатационной разведке, добыче твердых полезных ископаемых, строительстве и эксплуатации подземных объектов, непосредственно управлять процессами на производственных объектах, в том числе в условиях чрезвычайных ситуаций (ПК-4);
- владением знаниями процессов, технологий и механизации открытых горных и взрывных работ (ПСК-3.2).

Код формируемой компетенции	Содержание задания	Количество мероприятий	Максимальное количество баллов	Срок предоставления
Вводный блок				
Не предусмотрен				
	00	новной блок		
ПСК-3.2, ПК-4, ОПК-8	Задание на понимание терминов	3	12	Во время семестра
ПСК-3,2, ОПК-8, ПК-4	Групповая дискуссия	2	8	Во время семестра
ПСК-3.2, ПК-4, ОПК-8	Решение задач	2	14	Во время семестра
ПСК-3.2, ПК-4, ОПК-8	Тест	2	6	Во время семестра
ПСК-3.2, ПК-4, ОПК-8	Расчетно-графическое задание	2	20	Во время семестра
		Всего:	60	
ПСК-3.2, ПК-4, ОПК-8	Экзамен	Вопрос 1	20	По расписанию
		Вопрос 2	20	
		40		
Итого:			100	
	Допол	нительный блок		
ПСК-3.2, ПК-4, ОПК-8		конспект	5	По согласованию с преподавателем
Bcero 5				

Шкала оценивания в рамках балльно-рейтинговой системы МАГУ: $\langle 2 \rangle$ - 60 баллов и менее, $\langle 3 \rangle$ - 61-80 баллов, $\langle 4 \rangle$ - 81-90 баллов, $\langle 5 \rangle$ - 91-100 баллов, $\langle 3 \rangle$ - 61-100 баллов.