МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

филиал федерального государственного бюджетного образовательного учреждения высшего образования «Мурманский арктический государственный университет» в г. Апатиты

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ОД.14 Электрооборудование тепловых и атомных станций

(название дисциплины (модуля) в соответствии с учебным планом)

основной профессиональной образовательной программы по направлению подготовки

13.03.02 Электроэнергетика и электротехника направленность (профиль) «Высоковольтные электроэнергетика и электротехника»

(код и наименование направления подготовки с указанием направленности (профиля) (наименования магистерской программы))

высшее обр	азование – бакалавриат
	зысшее образование – бакалавриат / высшее образование – бразование – подготовка кадров высшей квалификации
	бакалавр
	квалификация
	заочная
	форма обучения
	2018
	год набора
Составитель: Николаев В.Г., к.т.н., доцент кафедры физики, биологии и инженерных технологий	Утверждено на заседании кафедры физики, биологии и инженерных технологий (протокол № 8 от 15 июня 2018 г.)
	Зав. кафедрой
	Николаев В.Г.

подпись

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ) – Цель курса:

В процессе изучения курса "Электрооборудование тепловых и атомных станций " студенты овладевают основами теории управления потоками электроэнергии, расчетов и анализа режимов электрических систем и сетей; анализа физических процессов в аппаратах управления, защиты и контроля систем передачи электроэнергии, а также обучение основным методам расчета электрофизических воздействий на аппараты в высоковольтных системах передачи и распределения энергии.

Задачи курса:

В результате освоения курса студенты должны приобрести знания методов составления расчетных схем, анализа режимов работы электрических сетей и систем, представление о рабочих и особых режимах их работы. Ознакомится с основными видами аппаратов управления и контроля потоками электрической энергии, особенностями условий их эксплуатации и электрофизическими процессами в них. Усвоить методы расчета установившихся и переходных процессов в электрических сетях. Ознакомиться с применением вычислительной техники при решении задач электроэнергетики.

2. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины формируются следующие компетенции:

- способностью применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач (ОПК-2);
- способностью использовать методы анализа и моделирования электрических цепей (ОПК-3);
- готовностью обеспечивать требуемые режимы и заданные параметры технологического процесса по заданной методике (ПК-7).

3. УКАЗАНИЕ МЕСТА ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ.

Дисциплина «Электрооборудование тепловых и атомных станций» относится к вариативной части учебного цикла.

Изучение дисциплины базируется и дополняет материал дисциплин:

«Физика», «Высшая математика», «Теоретические основы электротехники», «Электрические машины», «Общая энергетика», «Электротехническое и конструкционное материаловедение», «Учебная практика».

Знания, полученные при изучении курса необходимы в дальнейшем при изучении дисциплин: «Релейная защита электроэнергетических систем», «Электроэнергетические системы и сети», «Электрические станции и подстанции», «Производственная практика», «Итоговая государственная аттестация».

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ.

Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа. (из расчета 1 ЗЕТ= 36 часов).

3	5	3ET 3	(час.)	ЛК 	ПР 6	ЛБ 	часо в	й фо рм е	94	Ы	-	
3 Итог	6	1	36 144	- 4	-	- 4	- 14	2	27	34	9	- Экзамен Экзамен

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ.

№		Конта	актная раб	бота			
п/п	Наименование раздела, темы	ЛК	ПР	ЛБ	Всего контактных часов	Из них в интерактивной форме	Кол-во часов на СРС
1	Производство электроэнергии, современные и перспективные источники электроэнергии, электрооборудование электростанций.	1	1	-	1	-	7
2	Распределительные устройства (РУ), их схемы.	1	-	-	1	-	7
3	Системы измерения, контроля, управления. Электростанция как элемент энергосистемы.	1	-	-	1	-	7
4	Управление и контроль потоками электроэнергии. Электрофизические процессы в аппаратах управления.	1	-	-	1	-	7
5	Аппараты управления. Коммутационные аппараты.	-	1	-	1	-	7
6	Аппараты контроля потоков электроэнергии. Измерительные аппараты.	-	1	-	1	-	7
7	Передача и распределение электроэнергии. Линии электропередачи, понижающие и	-	1	-	1	-	7

	преобразовательные подстанции.						
8	Электрические нагрузки узлов электрических сетей, расчет режимов	-	1	-	1	-	8
	ЛЭП и электрических сетей						
9	Балансы активной и реактивной	-	1	-	1	-	8
	мощности в энергосистеме, качество						
1.0	электроэнергии				-		0
10	Электроснабжение, виды систем	-	1	-	1	-	8
	электроснабжения, типы электроприемников, режимы их						
	работы						
11	Методы расчета электрических	-	-	1	1	-	8
	нагрузок и обеспечения надежности.						
12	Показатели качества электроэнергии.	-	-	1	1	-	8
	Схемы электрических соединений в						
	системах электроснабжения						_
13	Особые режимы высоковольтной	-	-	1	1	-	8
	сети. Релейная защита и						
	автоматизация, типы автоматических устройств и их функции.						
14	Релейная защита генераторов,	_	-	1	1	_	8
1	трансформаторов, блоков генератор-						
	трансформатор, сборных шин						
15	Автоматическое управление в	-	-	-	-	2	8
	электроэнергетических системах						
16	Защита изоляции	-	-	-	-	-	8
	электрооборудования от внутренних						
	перенапряжений	4		4	1.4	2	101
	Итого:	4	6	4	14	2	121
	Экзамен						9

Содержание разделов дисциплины

№ раздела	Наименование раздела	Содержание раздела
1	2	3
1	Производство	Типы электростанций и особенности их технологического
	электроэнергии,	режима. Электрические схемы электростанций, компоновка
	современные и	электростанций. Электрооборудование электростанций.
	перспективные источники	Основные характеристики генераторов, трансформаторов,
	электроэнергии,	электродвигателей, электрических аппаратов и проводников.
	электрооборудование	Выбор электрооборудования. Собственные нужды
	электростанций.	электростанций.
2	Распределительные	Схемы РУ, область их применения, закрытые и открытые РУ.
	устройства (РУ), их	Конструктивное выполнение РУ. Заземляющие устройства.
	схемы.	Расчет заземляющих устройств.
3	Системы измерения,	Режимы работы электростанций в энергосистеме. Оптимальное
	контроля, управления.	распределение нагрузки между агрегатами электростанций.
	Электростанция как	Резерв мощности в энергосистеме. Планирование и организация
	элемент энергосистемы.	ремонтов оборудования.

4	Управление и контроль потоками электроэнергии. Электрофизические процессы в аппаратах управления.	Основные понятия теории аппаратов управления потоками электроэнергии. Назначение и классификация электрических аппаратов. Основные виды электрических воздействий. Электрическое поле. Перенапряжения. Характеристика сетевых условий работы электрических аппаратов. Номинальные параметры. Электродинамические воздействия и тепловые воздействия на электрические аппараты.
5	Аппараты управления. Коммутационные аппараты,	Классификация коммутационных аппаратов. Токи отключения, стойкость аппаратов при сквозных токах короткого замыкания. Физические процессы между контактами. Виды ионизационных и де ионизационных процессов. Двуполярная диффузия. Типы коммутационных аппаратов. Характеристики выключателей. Автоматическое повторное включение.
6	Аппараты контроля потоков электроэнергии. Измерительные аппараты.	Назначение и классификация измерительных трансформаторов. Особенности конструкций аппаратов для измерения токов и напряжений. Конструкции и принцип действия трансформаторов тока и напряжения. Векторные диаграммы.
7	Передача и распределение электроэнергии. Линии электропередачи, понижающие и преобразовательные подстанции.	Общие сведения об электроэнергетических системах. Основные технические, экономические и экологические проблемы передачи электроэнергии. Линии электропередачи (ЛЭП) переменного и постоянного тока, электрические сети, понижающие и преобразовательные подстанции.
8	Электрические нагрузки узлов электрических сетей, расчет режимов ЛЭП и электрических сетей	Статические характеристики и методы задания электрических нагрузок. Схемы замещения ЛЭП, трансформаторов, автотрансформаторов, определение их параметров. Основные уравнения, описывающие режимы ЛЭП. Расчеты режимов линий электропередачи и электрических сетей. Методы расчетов режимов сложных сетей.
9	Балансы активной и реактивной мощности в энергосистеме, качество электроэнергии	Определение потерь электроэнергии. Определение потерь электроэнергии. Связь режимных параметров, определяющих качество электроэнергии с балансом активной и реактивной мощностей в энергосистеме и последствия нарушения этих балансов. Основные методы и способы регулирования напряжения и частоты в электроэнергетических системах.
10	Электроснабжение, виды систем электроснабжения, типы электроприемников, режимы их работы	Системы электроснабжения (СЭС) различных объектов и их характерные особенности, особенности систем электроснабжения городов, промышленных предприятий, объектов сельского хозяйства и транспортных систем; типы электроприемников, режимы их работы; СЭС как подсистема электроэнергетических систем. Характеристики электроприемников, их режимы работы.
11	Методы расчета электрических нагрузок и обеспечения надежности.	Представление нагрузок и методы их расчета. Методы достижения заданного уровня надежности оборудования, систем электроснабжения; условия выбора параметров основного оборудования в системах электроснабжения различного назначения; режимы нейтрали; типы энергоустановок,
12	Показатели качества электроэнергии. Схемы электрических соединений в системах электроснабжения	Влияние показателей качества напряжения на работу электроприемников и оборудования СЭС. Нормирование показателей качества напряжения, интегральные критерии качества. Методы и средства обеспечения нормированных показателей качества напряжения. Схемы электрических соединений в СЭС. Области применения различных схем электрических соединений в СЭС. социально-экономические и экологические требования, предъявляемые к системам

		электроснабжения;
13	Особые режимы высоковольтной сети. Релейная защита и автоматизация, типы автоматических устройств и их функции.	Классификация особых режимов сети. Короткие замыкания и неполнофазные режимы. Методы расчета. Метод симметричных составляющих. Параметры элементов сети по прямой, обратной и нулевой последовательностям. Назначение устройств релейной защиты и автоматизации электроэнергетических систем. Соотношения электрических величин при коротких замыканиях.
14	Релейная защита генераторов, трансформаторов, блоков генератор-трансформатор, сборных шин	Повреждения и ненормальные режимы работы генераторов и трансформаторов. Основные и резервные защиты генераторов, трансформаторов и блоков генератор-трансформатор. Релейная защита сборных шин электрических станций и подстанций.
15	Автоматическое управление в электроэнергетических системах	Автоматическое повторное включение; автоматическое включение резервного источника питания: автоматическая частотная разгрузка; автоматическое включение синхронных генераторов на параллельную работу; автоматика предотвращения нарушения устойчивости, автоматика ликвидации асинхронного режима; назначение и виды устройств телемеханики.
16	Защита изоляции электрооборудования от внутренних перенапряжений	Источники и виды внутренних перенапряжений. Общая характеристика коммутационных перенапряжений. Перенапряжения переходного процесса при коммутациях. Ограничение коммутационных перенапряжений. Установившиеся перенапряжения в электропередачах.

Практические занятия Темы практических занятий

№ занятия	Тема
1	Характеристики и параметры элементов электроэнергетической системы. Расчет потоков электроэнергии в ЛЭП.
2	Распределение потоков мощности и напряжений в простых замкнутых сетях.
3	Рабочие режимы электроэнергетических систем.
4	Качество электрической энергии и его обеспечение.
5	Электроснабжение, виды систем электроснабжения, типы электроприемников, режимы их работы.
6	Методы расчета электрических нагрузок и обеспечения надежности. Обеспечение качества электроэнергии.

Лабораторные занятия

vinou	раторные запитии
$N_{\underline{0}}$	Тема
заняти	
Я	
1	Схемы распределительных устройств.
2	Конструкция заземляющего контура распределительного устройства.
3	Режимы сети с двумя источниками питания.
4	Сеть с изолированной нейтралью.
5	Автоматическое повторное включение линии.

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Основная литература:

- 1. Ушаков В. Я. Современные проблемы электроэнергетики: учебное пособие. Издательство Томского политехнического университета, 2014. 447 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_view_red&book_id=442813
- 2. Суворин А. В. Приемники и потребители электрической энергии систем электроснабжения: учебное пособие. Сибирский федеральный университет, 2014. 354 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book view red&book id=364591

Дополнительная литература:

- 1. Ершов Ю. А., Халезина О. П., Малеев А. В., Перехватов Д. П. Электроэнергетика: релейная защита и автоматика электроэнергетических систем: учебное пособие. Сибирский федеральный университет, 2012. 68 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_view_red&book_id=363895
- 2. Филиппова Т. А., Мисриханов М. Ш., Сидоркин Ю. М., Русина А. Г. Гидроэнергетика: учебное пособие НГТУ, 2013. 621 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_view_red&book_id=436213
- 3. Привалов Е. Е. Диагностика электроэнергетического оборудования: учебное пособие. Директ-Медиа, 2015. 227 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_view_red&book_id=428595
- 4. Пичуев А. В. ,Петуров В. И. ,Чеботаев Н. И. Электрификация горного производства в задачах и примерах: учебное пособие. Горная книга, 2012. 253 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_view_red&book_id=229001

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

В образовательном процессе используются:

- учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (мебель аудиторная (столы, стулья, доска аудиторная), комплект мультимедийного оборудования, включающий мультимедиапроектор, экран, переносной ноутбук для демонстрации презентаций; учебно-наглядные пособия; обеспечивающие тематические иллюстрации);
- помещения для самостоятельной работы (оснащены компьютерными столами, стульями, доской аудиторной, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета);
- помещения для хранения и профилактического обслуживания учебного оборудования (оснащены наборами инструментов, оборудованием, расходными материалами для монтажа, ремонта и обслуживания информационнотелекоммуникационной сети филиала и вычислительной техники);

- лаборатория информационных технологий (оснащена компьютерными столами, стульями, мультимедийным проектором, экраном проекционным, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета).

7.1 ПЕРЕЧЕНЬ ЛИЦЕНЗИОННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 1. Microsoft Windows.
- 2. Microsoft Office / LibreOffice.

7.2 ЭЛЕКТРОННО-БИБЛИОТЕЧНЫЕ СИСТЕМЫ

ЭБС «Издательство Лань»[Электронный ресурс]: электронная библиотечная система / ООО «Издательство Лань». – Режим доступа: https://e.lanbook.com/;

ЭБС «Электронная библиотечная система ЮРАЙТ» [Электронный ресурс]: электронная библиотечная система / ООО «Электронное издательство ЮРАЙТ». — Режим доступа: https://biblio-online.ru/;

ЭБС «Университетская библиотека онлайн»[Электронный ресурс]: электроннопериодическое издание; программный комплекс для организации онлайн-доступа к лицензионным материалам / ООО «НексМедиа». – Режим доступа: https://biblioclub.ru/.

7.3 СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ

1. Электронная база данных Scopus.

7.4 ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ

- 1. Справочно-правовая информационная система Консультант Плюс http://www.consultant.ru/
- 2. Электронный справочник "Информио" для высших учебных заведений http://www.informio.ru/

8. ИНЫЕ СВЕДЕНИЯ И МАТЕРИАЛЫ НА УСМОТРЕНИЕ ВЕДУЩЕЙ КАФЕДРЫ

Не предусмотрено.

9. ОБЕСПЕЧЕНИЕ ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ

Для обеспечения образования инвалидов и лиц с ограниченными возможностями здоровья реализация дисциплины может осуществляться в адаптированном виде, с учетом специфики освоения и дидактических требований, исходя из индивидуальных возможностей и по личному заявлению обучающегося.