МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

филиал федерального государственного бюджетного образовательного учреждения высшего образования «Мурманский арктический государственный университет» в г. Апатиты

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ОД.12Теория автоматического управления

(название дисциплины (модуля) в соответствии с учебным планом)

основной профессиональной образовательной программы по направлению подготовки

13.03.02 Электроэнергетика и электротехника направленность (профиль) «Электропривод и автоматика»

(код и наименование направления подготовки с указанием направленности (профиля)

высшее образование – бакалавриат

уровень профессионального образования. высшее образование – оакалавриат / высшее образование – специалитет, магистратура / высшее образование – подготовка кадров высшей квалификации
_
бакалавр
квалификация
•
заочная
Sao man
форма обучения
2015
год набора

Составитель:

Кириллов И.Е. доцент кафедры физики биологии и инженерных технологий

Утверждено на заседании кафедры физики, биологии и инженерных технологий (протокол № 1 от «24» января 2017 г.)

Зав. кафедрой Николаев В.Г.

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ) –

изучение основных принципов ТАУ, основных методов анализа и синтеза систем автоматического управления (САУ).

В результате освоения дисциплины обучающийся должен:

Знать:

- как выполнять расчеты и проводить экспериментальные исследования электрических машин и трансформаторов;

Уметь

- выполнять исследовательские работы в области электромеханики;

Впапеть.

- методами осуществления выбора электрических машин и трансформаторов в различных схемах электромеханики, электроприводов, испытательных и электрофизических установок, системах автоматического регулирования и др.

2. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

способностью применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач (ОПК-2);

готовностью обеспечивать требуемые режимы и заданные параметры технологического процесса по заданной методике (ПК-7).

3. УКАЗАНИЕ МЕСТА ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ.

Дисциплина относится к обязательной части, имеет логическую связь со следующими дисциплинами изучаемыми в предыдущих семестрах: высшая математика, физика, спецматематика, а также с дисциплинами изучаемыми в последующих семестрах: моделирование в технике, компьютерная и микропроцессорная техника в исследовании и управлении электропривода

Необходимыми входными знаниями для успешного освоения дисциплины являются знания методов решения дифференциальных уравнений, решения интегралов, знания разделов физики - электричество и механика.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ.

Общая трудоемкость дисциплины составляет 9 зачетных единиц или 324 часа.

(из расчета 1 3ET= 36 часов).

Курс	6 B		_	Контактная работа		гных	ıIX	на		
	Семестр	Трудоемкость 3ЭТ		ЛК	ПР	ЛБ	Всего контактных часов	Из них в интерактивных формах	Кол-во часов СРС	Форма контроля
3,4	6,7	9	324	6	-	10	16	2	299	экзамен
Ито	го:	9	324	6	-	10	16	2	299	экзамен

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ.

		Контактная работа					
№ п/п	Наименование раздела,				Всего контактных часов	Из них в интерактивной форме	Кол-во часов на СРС
	темы	лк	ПР	ЛБ			
1.	Линейные системы управления: 1. одномерные системы при детерминированных воздействиях 2. многомерные системы при детерминированных воздействиях 3. линейные системы при случайных воздействиях 4. устойчивость, управляемость и наблюдаемость линейных систем	0.66		1.11	1.77	1	33.22
2.	Описание и анализ линейных систем с помощью переходных функций: 1. одномерные системы при детерминированных воздействиях 2. многомерные системы при детерминированных воздействиях 3. линейные системы	0.66		1.11	1.77	1	33.22

			1		<u> </u>	1
	при случайных					
	воздействиях					
	Описание и анализ линейных систем с помощью интегральных преобразований:	0.66		1.11	1.77	33.22
3.	1. одномерные стационарные системы при детерминированных воздействиях, применение преобразований Лапласа 2. многомерные стационарные системы при детерминированных воздействиях, применение преобразований Лапласа 3. одномерные стационарные системы, применение преобразований Фурье					
	преобразовании Фурве					
4.	Описание и анализ линейных систем с помощью спектральных преобразований: 1. одномерные нестационарные системы при детерминированных воздействиях одномерные нестационарные системы при случайных воздействиях	0.66		1.11	1.77	33.22
5.	Формы математического описания нелинейных	0.66		1.11	1.77	33.22
	систем управления Методы анализа	0.66		1.11	1.77	22.22
	нелинейных систем	0.00		1.11	1.//	33.22
	управления:					
	1. анализ выходных					
	процессов методом					
6	линеаризации					
6.	2. анализ абсолютной					
	устойчивости					
	анализ выходных процессов при случайных					
	воздействиях методом					
	статической линеаризации					
7.	Синтез оптимальных	0.66		1.11	1.77	33.22
	непрерывных					
	детерминированных					
	систем: 1. нахождение					
	оптимального					
	программного управления					
	нахождение оптимального					
	управления с полной					
	обратной связью	0.66		1 11	1 77	22.22
	Синтез оптимальных непрерывных	0.66		1.11	1.77	33.22
8.	непрерывных стохастических систем:					
	1. нахождение					
		_		_		

	оптимального программного управления нахождение оптимального управления с полной					
	обратной связью					
9.	Синтез непрерывных линейных систем совместного оценивания и управления: 1. оптимальное управление линейными стохастическими непрерывными системами с накоплением информации о состоянии управление линейными непрерывными детерминированными системами с накоплением	0.66	1.11	1.77		33.22
	информации о состоянии Итого:	6	10	16	2	299
	экзамен	9		- 3	_	2))

Содержание разделов дисциплины

1. TEMA.

Основные определения. Классификация систем автоматического управления (САУ). Автоматические системы регулирования (АСР). Основные режимы работы АСР. Статический режим. Установившаяся ошибка. Динамика АСР. Методы описания динамики линейных АСР. Дифференциальные уравнения и их линеаризация. Передаточные функции. Временные функции. Частотные характеристики. Типовые звенья АСР, их характеристики. Передаточные функции и дифференциальные уравнения системы. Использование структурных схем и сигнальных графов. Многомерные линейные системы.

2. TEMA.

Понятие об устойчивости. Алгебраические и частотные критерии устойчивости. Показатели качества. Точность САР в типовых режимах. Коэффициенты ошибок. Методы оценки качества регулирования переходного процесса. Устойчивость системы.

3. TEMA.

Корректирующие устройства и их влияние на качество АСР. Методы повышение точности. Условия инвариантности. Комбинированные уравнения. Синтез АСР. Понятие об оптимальном синтезе. Автоматическое конструирование регуляторов.

4. TEMA.

Случайные сигналы и их характеристики. Прохождение случайного сигнала через линейную систему. Минимизация среднеквадратической ошибки. Параметрическая оптимизация. Оптимизация фильтрации.

5. TEMA.

Методы получения статических и динамических характеристик объектов управления (ОУ). Линейные динамические модели объектов управления. Характеристика основных алгоритмов управления, реализуемых с помощью типовых регуляторов. Расчет оптимальных параметров типовых регуляторов одноконтурных САУ. Расчет параметров регуляторов в системах с дополнительным информационным каналом.

6. TEMA.

Математическое описание дискретных систем. Понятие об ACP с цифровыми регуляторами. Разностные уравнения. Основы Z- преобразования. Анализ ACP с цифровыми регуляторами. Типовые алгоритмы функционирования цифровых регуляторов. Нелинейные импульсные системы.

7. TEMA.

Структурные модели. Управляемость и наблюдаемость. Регулятор состояния. Наблюдение состояния. Дуальное управление.

8. TEMA.

Специфические особенности нелинейных систем. Метод фазовой плоскости. Метод гармонического баланса.

9. TEMA.

Понятие об оптимальных системах. Постановка задачи оптимизации, критерии оптимальности и ограничения. Разновидность задач оптимизации. Методы оптимизации. Понятие о принципе максимума Л.С. Понтрягина. Динамическое программирование Р. Беллмана. Самонастраивающиеся системы управления, методы их реализации.

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ, НЕОБХОДИМОГО ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основная литература:

1. Шойко, В.П. Автоматическое регулирование в электрических системах : учебное пособие / В.П. Шойко. - Новосибирск : НГТУ, 2012. - 195 с. - ISBN 978-5-7782-1909-0 ; То же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=228798

Дополнительная литература:

- 2. Лубенцов, В.Ф. Теория автоматического управления : учебно-методическое пособие / В.Ф. Лубенцов, Е.В. Лубенцова ; Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Северо-Кавказский федеральный университет». Ставрополь : СКФУ, 2015. 143 с. : ил. Библиогр. в кн. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=457414
- 3. Першин, И.М. Управление в технических системах. Введение в специальность : учебное пособие / И.М. Першин, В.А. Криштал, В.В. Григорьев ; Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Северо-Кавказский федеральный университет». Ставрополь : СКФУ, 2015. 146 с. : ил. Библиогр. в кн. ISBN 978-5-905989-49-0 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=457553

7 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

В образовательном процессе используются:

- учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (мебель аудиторная (столы, стулья, доска аудиторная), комплект мультимедийного оборудования, включающий мультимедиапроектор, экран, переносной ноутбук для демонстрации презентаций; учебно-наглядные пособия; обеспечивающие тематические иллюстрации);
- помещения для самостоятельной работы (оснащены компьютерными столами, стульями, доской аудиторной, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета);
- помещения для хранения и профилактического обслуживания учебного оборудования (оснащены наборами инструментов, оборудованием, расходными материалами для монтажа, ремонта и обслуживания информационнот телекоммуникационной сети филиала и вычислительной техники);
- лаборатория информационных технологий (оснащена компьютерными столами, стульями, мультимедийным проектором, экраном проекционным, компьютерной техникой

с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета).

7.1 ПЕРЕЧЕНЬ ЛИЦЕНЗИОННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 1. Microsoft Windows.
- 2. Microsoft Office / LibreOffice.

7.2 ЭЛЕКТРОННО-БИБЛИОТЕЧНЫЕ СИСТЕМЫ

ЭБС «Издательство Лань»[Электронный ресурс]: электронная библиотечная система / ООО «Издательство Лань». – Режим доступа: https://e.lanbook.com/;

ЭБС «Электронная библиотечная система ЮРАЙТ» [Электронный ресурс]: электронная библиотечная система / ООО «Электронное издательство ЮРАЙТ». — Режим доступа: https://biblio-online.ru/;

ЭБС «Университетская библиотека онлайн»[Электронный ресурс]: электроннопериодическое издание; программный комплекс для организации онлайн-доступа к лицензионным материалам / ООО «НексМедиа». – Режим доступа: https://biblioclub.ru/.

7.3 СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ

1. Электронная база данных Scopus.

7.4 ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ

- 1. Справочно-правовая информационная система Консультант Плюс http://www.consultant.ru/
- 2. Электронный справочник "Информио" для высших учебных заведений http://www.informio.ru/

8. ИНЫЕ СВЕДЕНИЯ И МАТЕРИАЛЫ НА УСМОТРЕНИЕ ВЕДУЩЕЙ КАФЕДРЫ

Не предусмотрено.

9. ОБЕСПЕЧЕНИЕ ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ

Для обеспечения образования инвалидов и лиц с ограниченными возможностями здоровья реализация дисциплины может осуществляться в адаптированном виде, с учетом специфики освоения и дидактических требований, исходя из индивидуальных возможностей и по личному заявлению обучающегося.