Приложение 2 к РПД Теория теплофизических свойств веществ 16.03.01 Техническая физика Направленность (профиль) «Теплофизика» Форма обучения – заочная Год набора - 2017

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Физики, биологии и инженерных технологий
2.	Направление подготовки	16.03.01 Техническая физика
3.	Направленность (профиль)	Теплофизика
4.	Дисциплина (модуль)	Теория теплофизических свойств веществ
5.	Форма обучения	заочная
6.	Год набора	2017

2. Перечень компетенций

- способность использовать фундаментальные законы природы и основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-1);
- способность использовать технические средства для определения основных параметров технологического процесса, изучения свойств физико-технических объектов, изделий и материалов (ПК-9).

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

		Критерии и	показатели оценивания комп	етенций	Формы
Этап формирования компетенции (разделы, темы дисциплины)	Формируемая компетенция	Знать:	Уметь:	Владеть:	контроля сформированн ости компетенций
Введение. Термодинамический метод теории теплофизических свойств.	ОПК-1; ПК-9	особенности теплофизических свойствах веществ в газообразном, жидком и твердом состоянии; физические основы, лежащие в основе экспериментального метода исследования данного свойства, основные экспериментальные схемы для измерения данного свойства, получить представление о возможности улучшения классических экспериментальных схем	выбирать конкретный метод исследования и тип экспериментальной установки для измерения свойств конкретного вещества в конкретном диапазоне исследуемых параметров	методами оценки основных погрешностей измерений; навыками экспериментальных измерений температуры, давления, расхода, плотности, вязкости и теплопроводности тел.	Групповая дискуссия
Метод статической термодинамики. Идеальные газы.	етод статической термодинамики. особенности теплофизических		выбирать конкретный метод исследования и тип экспериментальной установки для измерения свойств конкретного вещества в конкретном диапазоне исследуемых параметров		Задачи, доклад, терминологичес кий тест
Статическая термодинамика смесей идеальных газов.	ОПК-1; ПК-9	особенности теплофизических свойствах веществ в газообразном, жидком и твердом состоянии; физические основы, лежащие в основе экспериментального метода исследования данного свойства, основные экспериментальные схемы для измерения данного свойства,	выбирать конкретный метод исследования и тип экспериментальной установки для измерения свойств конкретного вещества в конкретном диапазоне исследуемых параметров		Задачи, доклад, терминологичес кий тест

		получить представление о возможности улучшения классических экспериментальных схем			
Термодинамические свойства химически реагирующих веществ.	ОПК-1; ПК-9	особенности теплофизических свойствах веществ в газообразном, жидком и твердом состоянии; физические основы, лежащие в основе экспериментального метода исследования данного свойства, основные экспериментальные схемы для измерения данного свойства, получить представление о возможности улучшения классических экспериментальных схем	выполнять расчеты теплофизических свойств веществ на основе термодинамики, статистической физики и физической кинетики, используя данные о макроскопическом поведении и микроскопической структуре вещества; рассчитывать теплофизические свойства вещества в газообразном, жидком и твердом состоянии по теоретическим соотношениям в рамках обобщенных законов соответственных состояний.	методами оценки основных погрешностей измерений; навыками экспериментальных измерений температуры, давления, расхода, плотности, вязкости и теплопроводности тел.	Задачи, доклад, терминологичес кий тест
Силы межмолекулярного взаимодействия. Термодинамические свойства реальных веществ.	ОПК-1; ПК-9	особенности теплофизических свойствах веществ в газообразном, жидком и твердом состоянии; физические основы, лежащие в основе экспериментального метода исследования данного свойства, основные экспериментальные схемы для измерения данного свойства, получить представление о возможности улучшения классических экспериментальных схем	выбирать конкретный метод исследования и тип экспериментальной установки для измерения свойств конкретного вещества в конкретном диапазоне исследуемых параметров		Задачи, доклад, терминологичес кий тест
Термодинамические свойства реальных смесей.	ОПК-1; ПК-9	особенности теплофизических свойствах веществ в газообразном, жидком и твердом состоянии; основы теории погрешностей измерений; физические основы, лежащие в основе экспериментального метода исследования данного	выполнять расчеты теплофизических свойств веществ на основе термодинамики, статистической физики и физической кинетики, используя данные о макроскопическом поведении	методами оценки основных погрешностей измерений; навыками экспериментальных измерений температуры, давления, расхода, плотности, вязкости и теплопроводности тел.	Задачи, доклад, терминологичес кий тест

		J			
		свойства, основные	и микроскопической		
		экспериментальные схемы для	структуре вещества;		
		измерения данного свойства,	рассчитывать теплофизические		
		получить представление о	свойства вещества в		
		возможности улучшения	газообразном, жидком и твердом		
		классических экспериментальных	состоянии по теоретическим		
		схем	соотношениям в рамках		
			обобщенных законов		
			соответственных состояний.		
Процессы переноса в газах.		особенности теплофизических	выбирать конкретный метод	методами оценки основных	Задачи, доклад,
	ОПК-1; ПК-9	свойствах веществ в газообразном,	исследования и тип	погрешностей измерений;	терминологичес
		жидком и твердом состоянии;	экспериментальной	навыками экспериментальных	кий тест
		физические основы, лежащие в	установки для измерения	измерений температуры,	
		основе экспериментального	свойств конкретного	давления, расхода, плотности,	
		метода исследования данного	вещества в конкретном	вязкости и теплопроводности	
		свойства, основные	диапазоне исследуемых	тел.	
		экспериментальные схемы для	параметров		
		измерения данного свойства,			
		получить представление о			
		возможности улучшения			
		классических экспериментальных			
		схем			

4. Критерии и шкалы оценивания

4.1 Критерии оценки доклада

Баллы	Характеристики ответа студента								
20	- студент глубоко и всесторонне усвоил проблему;								
	- уверенно, логично, последовательно и грамотно его излагает;								
	- опираясь на знания основной и дополнительной литературы, тесно								
	привязывает усвоенные научные положения с практической								
	деятельностью;								
	- умело обосновывает и аргументирует выдвигаемые им идеи;								
	- делает выводы и обобщения;								
	- свободно владеет понятиями								
15	- студент твердо усвоил тему, грамотно и по существу излагает ее,								
	опираясь на знания основной литературы;								
	- не допускает существенных неточностей;								
	- увязывает усвоенные знания с практической деятельностью;								
	- аргументирует научные положения;								
	- делает выводы и обобщения;								
	- владеет системой основных понятий								
10	- тема раскрыта недостаточно четко и полно, то есть студент освоил								
	проблему, по существу излагает ее, опираясь на знания только								
	основной литературы;								
	- допускает несущественные ошибки и неточности;								
	- испытывает затруднения в практическом применении знаний;								
	- слабо аргументирует научные положения;								
	- затрудняется в формулировании выводов и обобщений;								
	- частично владеет системой понятий								
5	- студент не усвоил значительной части проблемы;								
	- допускает существенные ошибки и неточности при рассмотрении ее;								
	- испытывает трудности в практическом применении знаний;								
	- не может аргументировать научные положения;								
	- не формулирует выводов и обобщений;								
	- не владеет понятийным аппаратом								

4.2 Критерии оценки терминологического теста

Баллы	Характеристики ответа студента							
20	- студент глубоко и всесторонне усвоил проблему;							
	- уверенно, логично, последовательно и грамотно его излагает; - опираясь на знания основной и дополнительной литературы, тесно привязывает усвоенные научные положения с практической деятельностью;							
	- умело обосновывает и аргументирует выдвигаемые им идеи; - делает выводы и обобщения;							
	- свободно владеет понятиями							
15	- студент твердо усвоил тему, грамотно и по существу излагает ее, опираясь на знания основной литературы; - не допускает существенных неточностей;							
	- увязывает усвоенные знания с практической деятельностью; - аргументирует научные положения;							
	- делает выводы и обобщения;							

	- владеет системой основных понятий								
10	- тема раскрыта недостаточно четко и полно, то есть студент освоил								
	проблему, по существу излагает ее, опираясь на знания только								
	основной литературы;								
	- допускает несущественные ошибки и неточности;								
	- испытывает затруднения в практическом применении знаний;								
	- слабо аргументирует научные положения;								
	- затрудняется в формулировании выводов и обобщений;								
	- частично владеет системой понятий								
5	- студент не усвоил значительной части проблемы;								
	- допускает существенные ошибки и неточности при рассмотрении ее;								
	- испытывает трудности в практическом применении знаний;								
	- не может аргументировать научные положения;								
	- не формулирует выводов и обобщений;								
	- не владеет понятийным аппаратом								

4.3 Решение задач

20 баллов выставляется, если студент решил все рекомендованные задачи, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).

- 15 баллов выставляется, если студент решил не менее 85% рекомендованных задач, правильно изложил все варианты решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 10 баллов выставляется, если студент решил не менее 65% рекомендованных задач, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 5 баллов если студент выполнил менее 50% задания, и/или неверно указал варианты решения.

4.4 Подготовка опорного конспекта

Подготовка материалов опорного конспекта является эффективным инструментом систематизации полученных студентом знаний в процессе изучения дисциплины.

Составление опорного конспекта представляет собой вид внеаудиторной самостоятельной работы студента по созданию краткой информационной структуры, обобщающей и отражающей суть материала лекции, темы учебника. Опорный конспект призван выделить главные объекты изучения, дать им краткую характеристику, используя символы, отразить связь с другими элементами. Основная цель опорного конспекта облегчить запоминание. В его составлении используются различные базовые понятия, термины, знаки (символы) — опорные сигналы. Опорный конспект может быть представлен системой взаимосвязанных геометрических фигур, содержащих блоки концентрированной информации в виде ступенек логической лестницы; рисунка с дополнительными элементами и др.

Критерии оценки опорного конспекта	Максимальное количество баллов
- подготовка материалов опорного конспекта по изучаемым темам дисциплины только в текстовой форме;	5
- подготовка материалов опорного конспекта по изучаемым темам дисциплины в текстовой форме, которая сопровождается схемами, табличной информацией, графиками, выделением основных мыслей с помощью цветов, подчеркиваний.	10

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1 Примерный перечень вопросов к экзамену 7 сессия:

- 1. Основы термодинамики. Основные определения.
- 2. Работа в термодинамических процессах.
- 3. Внутренняя энергия термодинамических систем.
- 4. Характеристики термодинамических систем.
- 5. Описание политропных процессов в идеальных газах.
- 6. Теплофизические свойства газов. Коэффициент диффузии.
- 7. Теплофизические свойства газов. Коэффициент теплопроводности.
- 8. Теплофизические свойства газов. Динамическая вязкость.
- 9. Теплофизические свойства газов. Связь между коэффициентами диффузии, теплопроводности и динамической вязкости.
- 10. Теплофизические свойства жидкостей.
- 11. Барометрическая формула
- 12. Критические параметры газов и их взаимосвязь со свойствами газов.
- 13. Термохимические расчеты химических реакций.
- 14. Описание химических равновесий в термодинамических системах.
- 15. Направления протекания химических реакций в термодинамических системах.
- 16. Явления на границах раздела в гетерофазных термодинамических системах.
- 17. Капиллярный эффект.
- 18. Краевые углы смачивания.
- 19. Термохимия. Закон Гесса.
- 20. Термохимия. Закон Кирхгоффа.
- 21. Термохимия. Термохимические циклы.
- 22. Термохимия. Цикл Борна-Габера.
- 23. Реальные газы. Уравнения состояния реальных газов.
- 24. Вириальное уравнение состояния реальных газов.
- 25. Закон соответственных состояний для реальных газов.
- 26. Термодинамические функции реальных газов.

5.2 Примерный перечень вопросов к экзамену 8 сессия:

- 1. Идеальные газы.
- 2. Основные положения молекулярно-кинетической теории газов.
- 3. Длина свободного пробега молекул в газе по МКТ.
- 4. Молекулярно-кинетическая теория газов: Теплоемкость идеального газа.
- 5. Работа и теплоемкость газов в политропических процессах.
- 6. Второе начало термодинамики. Понятие энтропии.
- 7. Уравнения Клайперона-Клаузиуса для равновесия «жидкость-пар», «твердоежидкость», «твердое-пар»
- 8. Равновесия фаз чистого вещества. Химический потенциал.
- 9. Фазовые переходы I и II рода.
- 10. Уравнение Ван-дер-Ваальса.
- 11. Критерии равновесия в термодинамических системах.
- 12. Работа и теплоемкость газов в политропических процессах.
- 13. Термодинамические свойства реальных газов.
- 14. Эффект Джоуля -Томпсона
- 15. Диаграмма p-V водяного пара. Процессы подогрева жидкости, парообразования и пароперегрева.

- 16. Диаграммы *T-S* и *h-S* водяного пара. Термодинамические процессы в парах.
- 17. Цикл паровой компрессионной холодильной машины.
- 18. Тепловая диаграмма Т-Ѕ действительного холодильного цикла.
- 19. Цикл воздушной холодильной машины.
- 20. Абсорбционные холодильные установки.
- 21. Цикл парокомпрессионного теплового насоса.
- 22. Основной цикл паросиловой установки (цикл *Ренкина*) на перегретом паре без учета работы насоса.
- 23. Термический КПД цикла *Ренкина* с учетом работы насоса. Удельный расход пара и теплоты.
- 24. Тепловая диаграмма Т-S действительного холодильного цикла.

5.3 Примерный терминологический тест:

Дайте определения, запишите формулу.

ОБЩИЕ ЗАКОНЫ ТЕРМОДИНАМИКИ

- 1. Равновесные состояния и равновесные процессы
- 2. Работа
- 3. Температура
- 4. Идеальные газы
- 5. Первый закон термодинамики
- 6. Теплоемкость
- 7. Применение 1-го закона термодинамики к газам
- 8. Адиабатические процессы в газах
- 9. Второй закон термодинамики
- 10. Цикл Карно.
- 11. Коэффициент полезного действия обратимой тепловой машины
- 12. Энтропия
- 13. Закон возрастания энтропии
- 14. Энтропия равновесных систем
- 15. Третий закон термодинамики (теорема Нернста)

РЕАЛЬНЫЕ ГАЗЫ

- 1. Конденсация газов
- 2. Уравнение Ван-дер-Ваальса
- 3. Критическая точка.
- 4. Закон соответственных состояний
- 5. Внутренняя энергия и энтропия газа Ван-дер-Ваальса
- 6. Конденсация газов
- 7. Энтальпия
- 8. Эффект Джоуля Томсона
- 9. Эффект Джоуля Томсона для газа Ван-дер-Ваальса

ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ

- 1. Свободная энергия
- 2. Термодинамический потенциал при постоянном давлении
- 3. Метод термодинамических функций

ФАЗОВЫЕ ПЕРЕХОДЫ

- 1. Химический потенциал
- 2. Условия равновесия фаз
- 3. Фазовые переходы первого рода
- 4. Фазовые переходы второго рода
- 5. Правило фаз Гиббса

ХИМИЧЕСКИЕ РЕАКЦИИ

1. Условие химического равновесия

- 2. Химическое равновесие в газах
- 3. Теплота реакции.
- 4. Принцип Ле-Шателье

СЛАБЫЕ РАСТВОРЫ

- 1. Осмотическое давление
- 2. Соприкосновение фаз раствора
- 3. Распределение растворенного вещества между двумя фазами

5.4 Примерная тематика докладов:

- 1. Термодинамическое поведение чистых веществ в области фазовых переходов.
- 2. Критические явления в поведении чистых веществ.
- 3. Идеальные смеси (растворы).
- 4. Реальные смеси (растворы).
- 5. Термодинамические свойства химически реагирующих смесей идеальных газов.
- 6. Вязкость и теплопроводность плотных газов.
- 7. Вязкость и теплопроводность жидкостей.
- 8. Физические свойства наноструктур и области их применения
- 9. Химические свойства воды
- 10. Уравнение состояния идеального газа и уравнение Ван-дер-Ваальса реального газа.
- 11. Критические параметры вещества.
- 12. Приведенное уравнение Ван-дер-Ваальса и теории подобия в состояниях газов.
- 13. Описание реальных газов в рамках обобщенных законов соответственных состояний с использованием одно- или двухпараметрических уравнений и безразмерных термодинамических переменных.
- 14. Критерии подобия веществ. Способы их введения.
- 15. Метод Риделя теоретического описания температурной зависимости давления насыщенных паров жидкости рн(T).
- 16. Методы расчета теплоты испарения жидкостей.
- 17. Методы расчета критических параметров веществ; температур их фазовых переходов (температуры кипения и плавления); потенциалов межмолекулярного взаимодействия, фактора ацентричности и полярности молекул.
- 18. Соотношения между давлением, объемом и температурой чистых газов. Методы их расчета.
- 19. Классическая теория теплоемкости идеальных газов.
- 20. Теплофизические свойства аргона
- 21. Теплофизические свойства гелия
- 22. Теплофизические свойства криптона
- 23. Теплофизические свойства неона
- 24. Теплофизические свойства ксенона
- 25. Теплофизические свойства метилацетилена
- 26. Теплофизические свойства пропана
- 27. Теплофизические свойства изобутана
- 28. Теплофизические свойства пропанол-1
- 29. Теплофизические свойства циклогексана
- 30. Теплофизические свойства этилацетата
- 31. Теплофизические свойства кумола
- 32. Теплофизические свойства фермамида
- 33. Теплофизические свойства триэтиленгликоля
- 34. Теплофизические свойства бромбензола

5.5 Примерные задачи:

Задача 1.

Рассчитайте изменение внутренней энергии гелия (одноатомный идеальный газ) при изобарном расширении от 5 до 10 л под давлением 196 кПа.

Решение. $p_1 = p_2 = 196$ кПа, $V_1 = 5$ л, $V_2 = 10$ л. Начальная и конечная температуры: $T_1 = p_1V_1 / nR$, $T_2 = p_2V_2 / nR$. Изменение внутренней энергии идеального газа определяется только начальной и конечной температурой ($C_V = 3/2 \ nR$ - идеальный одноатомный газ):

 $\Delta U = C_V (T_2 - T_1) = 3/2 \ nR (T_2 - T_1) = 3/2 \ (p_2 V_2 - p_1 V_1) = 3/2 \times (196 \cdot 10^3) \times (10-5) \cdot 10^{-3} = 1470 \ Дж.$

Ответ. 1470 Дж.

Задача 2. Используя первый закон и определение теплоемкости, найдите разность изобарной и изохорной теплоемкостей для произвольной термодинамической системы.

Решение. В определение теплоемкости подставим дифференциальное представление первого закона и используем соотношение для внутренней энергии как функции температуры и объема:

$$C = \frac{\delta Q}{dT} = \frac{dU + pdV}{dT} = \frac{C_v dT + \left(\frac{\partial U}{\partial V}\right)_T dV + pdV}{dT} = C_v + \left[\left(\frac{\partial U}{\partial V}\right)_T + p\right] \frac{dV}{dT}$$

Отсюда при постоянном давлении получаем:

$$C_{\mathfrak{p}}-C_{\mathfrak{p}}=\left[\left(\frac{\partial U}{\partial V}\right)_{T}+p\right]\left(\frac{\partial V}{\partial T}\right)_{\mathfrak{p}}$$

Задача 3. Один моль ксенона, находящийся при 25 °C и 2 атм, расширяется адиабатически: а) обратимо до 1 атм, б) против давления 1 атм. Какой будет конечная температура в каждом случае?

Решение. а) Исходный объем ксенона (n = 1):

 $V_1 = nRT_1 / p_1 = 0.082 \cdot 298 / 2 = 12.2 \text{ л.}$

Конечный объем можно найти из уравнения адиабаты (для одноатомного идеального газа $\forall = C_p / C_V = 5/3$):

$$p_1 V_1^{5/3} = p_2 V_2^{5/3}$$

$$V_2 = V_1 \cdot (p_1/p_2)^{3/5} = 12.2 \cdot 2^{3/5} = 18.5 \text{ л.}$$

Конечную температуру находим по уравнению состояния идеального газа ($p_2 = 1$ атм):

$$T_2 = p_2 V_2 / nR = 18.5 / 0.082 = 225 \text{ K}.$$

б) При необратимом расширении против постоянного внешнего давления уравнение адиабаты неприменимо, поэтому надо воспользоваться первым законом термодинамики. Работа совершается за счет убыли внутренней энергии:

$$A = -\Delta U = nC_V (T_1 - T_2),$$

где n = 1, $C_V = 3/2$ R (одноатомный идеальный газ). Работа расширения против постоянного внешнего давления p_2 равна:

$$A = p_2 (V_2 - V_1) = nRT_2 - p_2V_1.$$

Приравнивая последние два выражения, находим температуру T_2 :

$$T_2 = (nC_VT_1 + p_2V_1) / (nC_V + nR) = 238 \text{ K}.$$

Температура выше, чем при обратимом расширении, т.к. в обратимом случае совершается большая работа, расходуется больше внутренней энергии и температура понижается на большую величину.

Ответ. а) 225 К; б) 238 К.

ТЕХНОЛОГИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

16.03.01 Техническая физика Направленность (профиль) – Теплофизика

(код, направление, профиль)

ТЕХНОЛОГИЧЕСКАЯ КАРТА

Шифр дисц	Б1.В. Д	B.7.1								
Дисциплина	лофизич	еских сі	войств	вещ	еств					
Kypc 3	семес	тр (6, 7							
Кафедра	Кафедра физики, биологии и инженерных технологий									
Ф.И.О. препо	давателя,		Маслобо	ев В.А., д	-р техн.	наук	с, профес	сор кафедры фі	изикі	Й,
звание, долж	ность		биологии	и инжен	ерных т	ехно	логий			
Общ. трудоемкостьчас/ЗЕТ 324/			/ 9 Ko.	л-во семе	стров	3	Форма	контроля	Экз	замен
ЛКобщ./тек. сем.			общ./тек. сем.	20/20	ЛБобщ/те	к. сем.	-/-	СРСобщ./тек. сем.	2	270/171

Компетенции обучающегося, формируемые в результате освоения дисциплины: (код, наименование)

- способность использовать фундаментальные законы природы и основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-1);
- способность использовать технические средства для определения основных параметров технологического процесса, изучения свойств физико-технических объектов, изделий и материалов (ПК-9).

Код формируемой компетенции	Содержание задания	Количество мероприятий	Максимальное количество баллов	Срок предоставления				
	Be	одный блок						
Не предусмотрен	Н							
	Oci	новной блок						
ОПК-1; ПК-9	Терминологический тест	1	20	В течение семестра				
ОПК-1; ПК-9	Реферат	1	20	В течение семестра				
ОПК-1; ПК-9	Решение задач	1	20	В течение семестра				
		Всего:	60					
ОПК-1; ПК-9	Dynastav	Вопрос 1	20	По поличания				
	Экзамен	Вопрос 2	20	По расписанию				
		Всего:	40					
		100						
Дополнительный блок								
ОПК-1; ПК-9	Подготовка опорного консп	10	По согласованию					
				с преподавателем				

Шкала оценивания в рамках балльно-рейтинговой системы МАГУ: «2» - 60 баллов и менее, «3» - 61-80 баллов, «4» - 81-90 баллов, «5» - 91-100 баллов.

ТЕХНОЛОГИЧЕСКАЯ КАРТА

Шифр дисциплины по РУП Б1.В.ДВ.7.1									
Дисциплина Теория теплофизических свойств веществ									
Курс 4 семестр 8									
Кафедра	физики, би	олог	ии и инже	енерных	технол	огий	Í		
Ф.И.О. препо	давателя,		Маслобо	ев В.А., д	-р техн.	нау	к, профес	сор кафедры ф	изики,
звание, должі	звание, должность биологии и инженерных технологий								
Общ. трудоемкость 324/9				1- во семе	стров	3	Форма н	контроля	Экзамен
ЛКобщ./тек. сем.			СРСобщ./тек. сем.	270/99					

Компетенции обучающегося, формируемые в результате освоения дисциплины: (код, наименование)

- способность использовать фундаментальные законы природы и основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-1);
- способность использовать технические средства для определения основных параметров технологического процесса, изучения свойств физико-технических объектов, изделий и материалов (ПК-9).

Код формируемой компетенции	Содержание задания	Количество мероприятий	Максимальное количество баллов	Срок предоставления				
	Вв	одный блок						
Не предусмотре	Н							
	Oci	новной блок						
ОПК-1; ПК-9	Терминологический тест	1	20	В течение семестра				
ОПК-1; ПК-9	Реферат	1	20	В течение семестра				
ОПК-1; ПК-9	Решение задач	1	20	В течение семестра				
		Всего:	60					
ОПК-1; ПК-9	Dynastay	Вопрос 1	20	По поотический				
	Экзамен	Вопрос 2	20	По расписанию				
		Всего:	40					
		100						
Дополнительный блок								
ОПК-1; ПК-9	Подготовка опорного консп	10	По согласованию					
	тюдготовка опорного консп	ickia	10	с преподавателем				

Шкала оценивания в рамках балльно-рейтинговой системы МАГУ: (2) - 60 баллов и менее, (3) - 61-80 баллов, (4) - 81-90 баллов, (5) - 91-100 баллов.