МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

филиал федерального государственного бюджетного образовательного учреждения высшего образования «Мурманский арктический государственный университет» в г. Апатиты

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Б.19 Материаловедение

(название дисциплины (модуля) в соответствии с учебным планом)

основной профессиональной образовательной программы по специальности

21.05.04 Горное дело специализация №6 «Обогащение полезных ископаемых»

(код и наименование направления подготовки с указанием направленности (профиля) (наименования магистерской программы))

высшее образование - специалитет

уровень профессионального образования: высшее образование – бакалавриат / высшее образование – специалитет, магистратура / высшее образование – подготовка кадров высшей квалификации

горный инженер (специалист)						
квалификация						
Заочная						
форма обучения						
2016						
год набора						

Составитель:

Бекетова Е.Б., к.т.н., доцент кафедры горного дела, наук о Земле и природообустройства

Утверждено на заседании кафедры горного дела, наук о Земле и природообустройства (протокол № 1 от 24 января 2017 г.)

Зав. кафедрой

_ Терещенко С.В.

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Целью изучения дисциплины «Материаловедение» является формирование у студентов необходимого уровня знаний о составе, строении и свойствах основных металлических и неметаллических материалов, методах упрочнения металлов и сплавов, рациональных областях применения тех или иных конструкционных материалов, применяемых в горном деле.

В результате освоения дисциплины обучающийся должен:

Знать:

- химический состав, структуры, свойства и области применения основных промышленных материалов, а также способы и режимов их упрочнения;
- строение и свойства материалов, применяемых в горном деле;
- сущность явлений, происходящих в них в условиях эксплуатации изделий;
- современные способы получения материалов с эксплуатационными свойствами;
- методы определения основных технологических и эксплуатационных свойств материалов;
- общие требования безопасности при применении материалов в горном деле.

VMeth

— оценивать и прогнозировать поведение материалов и изделий из них под воздействием различных внешних эксплуатационных факторов.

Владеть:

- методами целенаправленного изменения свойств материалов;
- представлениями о закономерностях, связывающих химический состав, структуру и свойства материалов;
- навыками работы экспериментального определения эксплуатационных материалов и методами оценки поведения материалов под воздействием на них различных эксплуатационных факторов.

2. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины формируются следующие компетенции:

- готовностью с естественнонаучных позиций оценивать строение, химический и минеральный состав земной коры, морфологические особенности и генетические типы месторождений твердых полезных ископаемых при решении задач по рациональному и комплексному освоению георесурсного потенциала недр (ОПК-4).

3. УКАЗАНИЕ МЕСТА ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ.

Данная дисциплина относится к базовой части образовательной программы по специальности 21.05.04 «Горное дело» специализация №6 «Обогащение полезных ископаемых».

Для освоения данной дисциплины обучающиеся используют знания, умения, навыки, которые они получили в процессе изучения дисциплин: «Физика», «Химия», «Геология».

В свою очередь, дисциплина «Материаловедение» представляет собой методологическую базу для изучения дисциплин: «Технология и комплексная механизация открытых горных работ», «Безопасность ведения горных работ и горноспасательное дело», «Горные машины и оборудование», «Эксплуатация карьерного оборудования» и др.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость дисциплины составляет 4 зачетные единицы или 144 часа (из расчета 1 ЗЕТ= 36 часов).

	Курс	Трудоемкость в 3ЭТ	Общая трудоемкость (час)	Контактная работа				1ВНЫХ	в на	работы	эв на Б		
				ЛК	ПР	ЛБ	Всего контактных часов	них в еракті мах	Кол-во часов СРС	Курсовые ра	Кол-во часов контроль	Форма контроля	
	3	3	108	4	4	2	10	2	98	1			
	3	1	36						27		9	экзамен	
	Итого:	4	144	4 4 2		2	10	2	125	-	9	экзамен	

В интерактивной форме часы используются в виде экспресс-опроса по освоенным дома самостоятельно терминам и понятиям, заслушивания и обсуждения, подготовленных студентами практических (решение задач) работ по тематике дисциплины.

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

		Конт	актная р	абота		Из них в интерактивной форме	C	
№ п/п	Наименование раздела, темы	ЛК	ПР	ЛБ	Всего контактных часов		Кол-во часов на СРС	Кол-во часов на контроль
1.	Основные методы исследования металлов и сплавов	0.25			0.25		11	
2.	Атомно-кристаллическое строение металлов и сплавов	0.5	1		1.5	1	11	
3.	Строение реальных металлов	0.5		2	2.5		11	
4.	Деформация и механические свойства металлов	0.5	1		1.5		11	
5.	Процессы, происходящие при нагреве деформированного металла	0.5			0.5		11	
6.	Разрушение металлов	0.5	1		1.5		11	
7.	Железоуглеродистые сплавы	0.25			0.25		12	
8.	Основы теории термической обработки стали	0.25	1		1.25	1	12	
9.	Технология термической обработки стали	0.25			0.25		12	
10.	Конструкционные стали	0.25			0.25		11	
11.	Сплавы на основе алюминия	0.25			0.25		12	
	Экзамен							9
	Итого:	4	4	2	10	2	125	9

Содержание дисциплины

- **Тема 1.Основные методы исследования металлов и сплавов.** Роль материалов в современной технике. Работы отечественных и зарубежных ученых в области металловедения
- **Тема 2. Атомно-кристаллическое строение металлов и сплавов.** Понятие о пространственной кристаллической решетке и элементарной ячейке. Основные типы кристаллических решеток металлов (ОЦК, ГЦК, ГПУ). Анизотропия свойств. Квазиизотропия в поликристаллическом материале.
- **Тема 3. Строение реальных металлов.** Классификация дефектов кристаллического строения (ДКС). Точечные дефекты. Понятие о дислокации. Краевая, винтовая дислокации. Границы зерен. Влияние ДКС на механические свойства металлов.
- **Тема 4.** Деформация и механические свойства металлов. Упругая деформация. Упругие константы и от чего они зависят. Основные механические характеристики металлов. Пластическая деформация. Плоскости и направления скольжения в кристаллах. Роль нормальных и касательных напряжений. Сдвиговая деформация как движение ДКС типа дислокаций. Пластическая деформация поликристаллов. Структура и свойства деформированного металла. Явление наклепа. Текстура деформации. Два пути повышения прочности металлов (схема Одинга): 1) создание бездефектных кристаллов; 2) повышение плотности дислокаций или создание микроскопической неоднородности, препятствующей их движению.
- **Тема 5. Процессы, происходящие при нагреве деформированного металла.** Термодинамическая неустойчивость деформированного металла. Изменение структуры и свойств деформированного металла с повышением температуры. Возврат. Вакансионный отдых. Полигонизация. Первичная рекристаллизация. Собирательная рекристаллизация. Факторы, влияющие на величину зерна рекристаллизованного металла. Вторичная рекристаллизация. Текстура рекристаллизации.
- **Тема 6. Разрушение металлов.** Разрушение металлов. Хрупкое и вязкое разрушение. Схема А.Ф.Иоффе. Испытания на ударную вязкость. Понятие о пороге хладноломкости металлов. Факторы, влияющие на склонность металла к хрупкому разрушению.
- **Тема 7. Железоуглеродистые сплавы.** Полиморфизм железа. Критические точки железа. Взаимодействие железа с углеродом. Фазы железоуглеродистых сплавов, их характеристика и свойства. Процессы кристаллизации и формирования структуры сплавов с различным содержанием углерода (сталей и чугунов). Классификация чугунов по форме графитных включений и строению металлической основы. Серый, ковкий, высокопрочный чугуны; получение, свойства маркировка.

Углеродистые стали. Критические точки сталей. Влияние углерода и постоянных примесей на структуру и свойства сталей. Влияние легирующих элементов на полиморфизм железа. Маркировка углеродистых сталей. Маркировка легированных сталей.

Тема 8. Основы теории термической обработки стали. Критические точки сталей. Превращение перлита в аустенит. Рост зерна аустенита при нагреве. Влияние величины зерна на свойства стали. Влияние легирующих элементов на процесс образования аустенита и на рост зерна аустенита. Перегрев, пережог, причины их возникновения и меры предупреждения.

Превращения в стали при охлаждении. Изотермический распад переохлажденного аустенита эвтектоидной стали. Три ступени превращения. Перлитное (диффузионное) превращение по типу I ступени. Свойства перлита, троостита, сорбита.

Мартенситное превращение (III ступень) Феноменология мартенситного превращения, его основные особенности. Свойства мартенсита.

Промежуточное (бейнитное) превращение. Механизм превращения. Строение и свойства продуктов распада. Изотермический распад переохлажденного аустенита доэвтектоидных и заэвтектоидных углеродистых сталей. Влияние легирующих элементов

на изотермический распад переохлажденного аустенита. Распад переохлажденного аустенита при непрерывном охлаждении. Верхняя критическая скорость закалки и факторы, на нее влияющие.

Превращения, происходящие при нагреве закаленной стали. Строение и свойства структур отпуска. Влияние легирующих элементов на превращения при отпуске (вторичная твердость, отпускная хрупкость)

Тема 9. Технология термической обработки стали. Предварительная термическая обработка стали (отжиг и нормализация) и цель ее проведения.

Закалка. Выбор температуры нагрева под закалку. Термические и структурные напряжения, возникающие при закалке и меры их ослабления. Способы закалки стали (в одном охладителе, в двух охладителях, ступенчатая, изотермическая, с самоотпуском).

Закаливаемость и прокаливаемость стали. Факторы, влияющие на прокаливаемость. Влияние прокаливаемости на свойства стали. Отпуск стали. Виды и назначение отпуска (низкотемпературный, среднетемпературный и высокотемпературный). Влияние отпуска на свойства стали. Термомеханическая обработка стали, основные виды, влияние обработки на свойства сталей.

Поверхностная закалка (ТВЧ, при нагреве лазером). Химико-термическая обработка стали. Физические основы химико-термической обработки, свойства сталей после ХТО. Цементация стали. Назначение. Стали, применяемые для цементации. Термообработка цементованных деталей. Азотирование стали. Стали, применяемые для азотирования. Свойства азотированного слоя. Нитроцементация стали.

Тема 10. Конструкционные стали. Назначение конструкционных сталей различного химического состава. Низкоуглеродистые (цементуемые стали). Состав, термообработка, свойства. Среднеуглеродистые стали (улучшаемые) стали. Состав, термообработка, свойства. Рессорно-пружинные стали. Состав, термообработка, свойства. Шарикоподшипниковые стали. Состав, термообработка, свойства. Нержавеющие стали (хромистые, хромоникелевые). Состав, свойства. Интеркристаллитная коррозия, меры борьбы с ней.

Тема 11. Сплавы на основе алюминия. Алюминий и его свойства. Алюминиевые сплавы. Их классификация и применение: деформируемые сплавы, не упрочняемые термообработкой, деформируемые сплавы, упрочняемые термообработкой. Литейные алюминиевые сплавы. Маркировка алюминиевых сплавов.

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Основная литература:

- 1. Материаловедение и технология металлов. Учебник/ Под ред. Г.П. Фетисова. М.: Высшая школа, 2002. 638 с.
- 2. Богодухов С.И. Курс материаловедения в вопросах и ответах. Учебное пособие. М.: Машиностроение, 2005. 288 с.

Дополнительная литература:

- 3. Материаловедение. Учебное пособие/ под ред. В.С. Чередниченко. М.: Омега-Л, 2009. 752 с.
- 4. Шубина Н.Б. Материаловедение в горном машиностроении: учебное пособие / Н.Б. Шубина. 2-е изд., испр. и перераб. М.: Горная книга, 2011. 269 с. [Электронный ресурс]. URL: //biblioclub.ru/index.php?page=book&id=99698

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

В образовательном процессе используются:

– учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и

индивидуальных консультаций, текущего контроля и промежуточной аттестации (мебель аудиторная (столы, стулья, доска аудиторная), комплект мультимедийного оборудования, включающий мультимедиапроектор, экран, переносной ноутбук для демонстрации презентаций; учебно-наглядные пособия; обеспечивающие тематические иллюстрации);

- помещения для самостоятельной работы (оснащены компьютерными столами, стульями, доской аудиторной, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду университета);
- помещения для хранения и профилактического обслуживания учебного оборудования (оснащены наборами инструментов, оборудованием, расходными материалами для монтажа, ремонта и обслуживания информационнот телекоммуникационной сети филиала и вычислительной техники);
- лаборатория молекулярной физики и материаловедения (оснащена: доска, столы ученические, стулья ученические, мультимедийное оборудование (проектор), измерительные стенды-12 шт., цифровые мультиметры-6 шт., звуковой генератор-1 шт., источники питания-3 шт.).

7.1 ПЕРЕЧЕНЬ ЛИЦЕНЗИОННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 1. Microsoft Windows.
- 2. Microsoft Office / LibreOffice.

7.2 ЭЛЕКТРОННО-БИБЛИОТЕЧНЫЕ СИСТЕМЫ

- 1. ЭБС «Издательство Лань» [Электронный ресурс]: электронная библиотечная система / OOO «Издательство Лань». Режим доступа: https://e.lanbook.com/;
- 2. ЭБС «Электронная библиотечная система ЮРАЙТ» [Электронный ресурс]: электронная библиотечная система / ООО «Электронное издательство ЮРАЙТ». Режим доступа: https://biblio-online.ru/;
- 3. ЭБС «Университетская библиотека онлайн» [Электронный ресурс]: электроннопериодическое издание; программный комплекс для организации онлайн-доступа к лицензионным материалам / ООО «НексМедиа». – Режим доступа: https://biblioclub.ru/.

7.3 СОВРЕМЕННЫЕ БАЗЫ ДАННЫХ:

- 1. Электронная база данных Scopus;
- 2. «Университетская библиотека online» электронная библиотечная система http://biblioclub.ru/
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 4. Информационный портал "Студенту вуза" http://studentu-vuza.ru/;

7.4. ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ

Справочно-правовая информационная система Консультант Плюс http://www.consultant.ru/

8. ИНЫЕ СВЕДЕНИЯ И МАТЕРИАЛЫ НА УСМОТРЕНИЕ ВЕДУЩЕЙ КАФЕДРЫ Не предусмотрено.

9. ОБЕСПЕЧЕНИЕ ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ

Для обеспечения образования инвалидов и лиц с ограниченными возможностями здоровья реализация дисциплины может осуществляться в адаптированном виде, с учетом специфики освоения и дидактических требований, исходя из индивидуальных возможностей и по личному заявлению обучающегося.