МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

филиал федерального государственного бюджетного образовательного учреждения высшего образования «Мурманский арктический государственный университет» в г. Апатиты

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.2.2 Ядерная физика (продвинутый уровень)

(название дисциплины (модуля) в соответствии с учебным планом)

основной профессиональной образовательной программы по направлению подготовки

16.04.01 Техническая физика направленность (профиль) Теплофизика и молекулярная физика

(код и наименование направления подготовки с указанием направленности (профиля) (наименования магистерской программы))

высшее образование – магистратура

уровень профессионального образования: высшее образование – бакалавриат / высшее образование – специалитет, магистратура / высшее образование – подготовка кадров высшей квалификации

	магистр	
КВ	залификация	
	очная	
фој	рма обучения	
	2018	
I	год набора	
Составитель: Николаев В.Г., доцент, канд. физмат. наук, зав. кафедрой физики, биологии и инженерных технологий	Утверждено на заседант биологии и инженерных (протокол № 8 от «15»и	х технологий
J. C.	Зав. кафедрой	В.Г.Николаев ФИО

1. **ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)** — формирование у студентов представлений, знаний, умений и навыков в области ядерной физики, необходимых для производственной, научно-исследовательской и проектной деятельности специалиста.

В результате освоения дисциплины «Ядерная физика» обучающийся должен:

знать:

- основные законы и явления микромира;
- основные методы ядерно-физических исследований;
- типы ядерных реакций и их закономерности;
- законы прохождения излучения через вещество;
- источники и детекторы ядерных излучений.

уметь:

- 1. использовать полученные знания в практической деятельности
- 2. проводить оценочные и инженерные расчеты результатов ядерных превращений *владеть*:
- навыками работы с технической литературой, научно-техническими отчетами, справочниками и другими информационными источниками

2. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины формируются следующие компетенции:

- способность демонстрировать и использовать углубленные теоретические и практические знания фундаментальных и прикладных наук (ОПК-2);
- способность самостоятельно выполнять физико-технические научные исследования для оптимизации параметров объектов и процессов с использованием стандартных и специально разработанных инструментальных и программных средств (ПК-6).

3. УКАЗАНИЕ МЕСТА ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Данная дисциплина относится к вариативной части блока Б1.В основной образовательной программы подготовки магистров 16.04.01 Техническая физика и является дисциплиной по выбору.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость дисциплины составляет 3 зачетные единицы или 108 часов (из расчета 1 ЗЕТ= 36 часов).

Курс	Семестр			Контактная работа			Кол-во часов на СРС	Курсовые работы	Кол-во часов на	Форма контроля
------	---------	--	--	-------------------	--	--	---------------------------	--------------------	-----------------------	-------------------

		Трудоемкость в ЗЕТ	Оощая трудоемкость (час.)	лк	ПР	ЛБ	P H	из них в интер- активной форме]	контроль	
2	3	3	108	10	20	-	30	-	78	-	-	зачет
Ито	ого:	3	108	10	20	-	30	-	78	-	-	зачет

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

		Конта	актная р	абота	актных	в і форме	СРСКол-во часов на	контрольКол-во часов на
№ п/п	Наименование раздела, темы	ЛК	ПР	ЛБ	часовВсего контактных	Из них в интерактивной форме		
1.	Место и значение ядерной физики.	2	-	-	2	-	10	-
2.	Статические свойства атомных ядер.	-	-	-	-	-	10	-
3.	Радиоактивность. Полупроводниковые, сцинтилляционные и трековые детекторы.	2	4	-	6	-	10	-
4	Деление и синтез ядер.	-	4	-	4	-	10	-
5	Взаимодействие излучения с веществом.	2	4	-	6	-	10	-
6	Ядерные реакции.	-	4	-	4	-	10	-
7	Детекторы частиц ионизирующего излучения.	2	4	-	6	-	10	-
8	Элементарные частицы.	2	-	-	2	-	8	-
	Итого:	10	20	-	30	-	78	-
	Зачет							

Тема 1. МЕСТО И ЗНАЧЕНИЕ ЯДЕРНОЙ ФИЗИКИ

Предмет ЯФ. Место и значение ЯФ в современном естествознании. Основные задачи, программа и структура курса. Основные этапы развития ЯФ. Виды фундаментальных взаимодействий.

Тема 2.СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР

Основные статические свойства ядер: массовое электрический число, заряд, состав, размеры, энергия связи, спин, момент количества движения, момент, квадрупольный момент. Свойства Основы магнитный ядерных сил. теории ядерных сил. Модели атомных ядер.

Тема 3. РАДИОАКТИВНОСТЬ. ПОЛУПРОВОДНИКОВЫЕ, СЦИНТИЛЛЯЦИОННЫЕ И ТРЕКОВЫЕ ДЕТЕКТОРЫ

Виды радиоактивности, радиоактивные семейства. Законы простого и сложного радиоактивного распада. Закономерности альфа- бета- и гаммараспада. Газовые, полупроводниковые, сцинтилляционные и трековые детекторы.

Тема 4. ДЕЛЕНИЕ И СИНТЕЗ ЯДЕР

Элементарная теория деления. Энергия и продукты деления ядер. Основы цепного процесса. Ядерные реакции синтеза. Термоядерные реакции во Вселенной и в лабораторных условиях. Проблемы управляемого термоядерного синтеза.

Тема 5. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

Ионизирующее излучение. Обшие закономерности взаимодействия ионизирующего излучения вещества. Взаимодействие атомами тяжелых c заряженных частиц c веществом. Взаимодействие электронов гаммаквантов с веществом. Пробеги частиц ионизирующего излечения в веществе.

Тема 6. ЯДЕРНЫЕ РЕАКЦИИ

Классификация реакций. ядерных Законы сохранения ядерных реакциях. Механизмы и параметры ядерных реакций. Особенности ядерных реакций, протекающих при воздействии частиц, имеющих различные параметры (энергетические, массовые, зарядовые, корпускулярно-волновые). Источники заряженных гамма-квантов. Источники нейтронов частиц И других нейтральных частиц.

Тема 7. ДЕТЕКТОРЫ ЧАСТИЦ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Принципы обнаружения, радиометрии и спектрометрии в ЯФ. Регистрация заряженных и нейтральных частиц различных энергий.

Тема 8. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Открытие и классификация элементарных частиц. Античастицы. Модели частиц и античастиц.

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ, НЕОБХОДИМОГО ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

а) основная литература:

1. Малышев Л. Г., Повзнер А. А. Физика атома и ядра - Екатеринбург: Издательство Уральского университета, 2014 — 145 с. - [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book red&id=276290&sr=1

б) дополнительная литература:

- 2. Широков Ю. М., Юдин Н. П. Ядерная физика. М.: **Наука**, 1980 728 с. [Электронный ресурс]. URL: **http://biblioclub.ru/index.php? page=book red&id=450094&sr=1**
- 3. Михайлов М. А. Ядерная физика и физика элементарных частиц: учебное пособие М.: Прометей, 2013 25 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book red&id=437322&sr=1

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

В образовательном процессе используются:

- учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (мебель аудиторная (столы, стулья, доска аудиторная), комплект мультимедийного оборудования, включающий мультимедиапроектор, экран, переносной ноутбук для демонстрации презентаций; учебно-наглядные пособия; обеспечивающие тематические иллюстрации);
- помещения для самостоятельной работы (оснащены компьютерными столами, стульями, доской аудиторной, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета);
- помещения для хранения и профилактического обслуживания учебного оборудования (оснащены наборами инструментов, оборудованием, расходными материалами для монтажа, ремонта и обслуживания информационнотельной техники);
- лаборатория информационных технологий (оснащена компьютерными столами, стульями, мультимедийным проектором, экраном проекционным, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета).

7.1 ПЕРЕЧЕНЬ ЛИЦЕНЗИОННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 1. Microsoft Windows.
- 2. Microsoft Office / LibreOffice.

7.2 ЭЛЕКТРОННО-БИБЛИОТЕЧНЫЕ СИСТЕМЫ

ЭБС «Издательство Лань»[Электронный ресурс]: электронная библиотечная система / ООО «Издательство Лань». – Режим доступа: https://e.lanbook.com/;

ЭБС «Электронная библиотечная система ЮРАЙТ» [Электронный ресурс]: электронная библиотечная система / ООО «Электронное издательство ЮРАЙТ». — Режим доступа: https://biblio-online.ru/;

ЭБС «Университетская библиотека онлайн»[Электронный ресурс]: электроннопериодическое издание; программный комплекс для организации онлайн-доступа к лицензионным материалам / ООО «НексМедиа». – Режим доступа: https://biblioclub.ru/.

7.3 СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ

1. Электронная база данных Scopus.

7.4 ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ

- 1. Справочно-правовая информационная система Консультант Плюс http://www.consultant.ru/
- 2. Электронный справочник "Информио" для высших учебных заведений http://www.informio.ru/

8. ИНЫЕ СВЕДЕНИЯ И МАТЕРИАЛЫ НА УСМОТРЕНИЕ ВЕДУЩЕЙ КАФЕДРЫ

Не предусмотрено.

9. ОБЕСПЕЧЕНИЕ ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ

Для обеспечения образования инвалидов и лиц с ограниченными возможностями здоровья реализация дисциплины может осуществляться в адаптированном виде, с учетом специфики освоения и дидактических требований, исходя из индивидуальных возможностей и по личному заявлению обучающегося.