Приложение 2 к РПД «Экологическая геология» 05.03.01 Геология Направленность (профиль) – Геофизика Форма обучения – очная Год набора - 2018

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Горного дела, наук о Земле и природообустройства
2.	Направление подготовки	05.03.01 Геология
3.	Направленность (профиль)	Геофизика
4.	Дисциплина (модуль)	Экологическая геология
5.	Форма обучения	очная
6.	Год набора	2018

2. Перечень компетенций

- способность использовать знания в области геологии, геофизики, геохимии, гидрогеологии и инженерной геологии, геологии и геохимии горючих ископаемых, экологической геологии для решения научно-исследовательских задач (в соответствии с направленностью (профилем) подготовки) (ПК-1);
- способность самостоятельно получать геологическую информацию, использовать в научно-исследовательской деятельности навыки полевых и лабораторных геологических исследований (в соответствии с направленностью (профилем) подготовки) (ПК-2).

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования компетенции	Формируемая	Критер	Формы контроля		
(разделы, темы дисциплины)	компетенция	Знать:	Уметь:	Владеть:	сформированности компетенций
1. Экогеологическая проблематика	ПК-1	Экологические свойства геологической среды: основные понятия и термины. Научные направления и прикладные задачи экогеологии.	Понимать, излагать и критически анализировать базовую информацию в области экологии и природопользования	Способностью использовать знания в области геологии, геофизики, геохимии, гидрогеологии и инженерной геологии, геологии и геохимии горючих ископаемых, экологической геологии для решения научно-исследовательских задач	
2. Ресурсная экофункция геосреды	ПК-2	Проблемы роста потребления невосполнимых ресурсов. Технологию восстановления ресурсов и поиска новых ресурсов.	Использовать геологическую информацию в научно-исследовательской работе	Способностью самостоятельно получать геологическую информацию, использовать в научно-исследовательской деятельности навыки полевых и лабораторных геологических исследований	Реферат Тестирование Практическая работа
3. Геодинамическая функция ПК-1 синергетике, как о подходе к геоэколог пеосреды ПК-2 изучению открытых предотвр		Рассчитывать геоэкологический риск для предотвращения геоэкологической опасности	Способностью использовать знания в области геологии, геофизики, геохимии, гидрогеологии и инженерной геологии, геологии и геохимии горючих ископаемых, экологической геологии для решения научно-исследовательских задач		
4. Геохимическая экофункция геосреды	ПК-1 ПК-2	Природные и техногенные геохимические поля и аномалии.	Моделировать геохимические поля на основе анализа источников, эмпирических распределений химических веществ в субстратах.	Способностью использовать знания в области геохимии для решения научно-исследовательских задач	Тестирование Реферат Практическая работа

Этап формирования компетенции	Формируемая	Критер	Формы контроля		
(разделы, темы дисциплины)	компетенция	Знать:	Уметь:	Владеть:	сформированности компетенций
5. Геофизическая экофункция ПК-1 геосреды ПК-2		Природные и техногенные геофизические поля и их аномалии. Применять геофизические критерии для оценки медикосанитарной обстановки		Способностью самостоятельно получать геологическую информацию, использовать в научно-исследовательской деятельности навыки полевых и лабораторных геологических исследований	
6. Экогеология городов	ПК-1	Особенности строения приповерхностного геологического разреза урбанизированных территорий. Экологическое значение статических и динамических свойств геологической среды в районах жилой и промышленной застройки.	Интерпретировать данные аварийности и функциональных сбоев систем жизнеобеспечения для экспертизы жилых и промышленных объектов	Способностью самостоятельно получать геологическую информацию	
7. Мониторинг геосреды	ПК-1 ПК-2	Виды мониторинга окружающей среды.	Составлять картографические модели геологической среды для организации геомониторинга	Методами обработки, анализа и синтеза полевой и лабораторной геоэкологической информации	Практическая работа Тестирование Реферат
8. Экогеологическое картирование	е картирование ПК-1 ПК-2 Современные подходы к оценке экогеологических обстановок.		Использовать методы изучения техногенных воздействий на геологическую среду и оценка этих воздействий.	Составлением прогнозных экогеологических карт	Практическая работа Тестирование Реферат

4. Критерии и шкалы оценивания

4.1 Тестирование

Процент правильных ответов	До 60	60-80	81-100
Количество баллов	2	3	4

4.2 Практические работы

- 5 баллов студент решил все рекомендованные задачи, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 4 балла студент решил не менее 85% рекомендованных задач, правильно изложил все варианты решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 3 балла студент решил не менее 65% рекомендованных задач, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 2 балла студент выполнил менее 50% задания, и/или неверно указал варианты решения.

4.3 Критерии оценки полготовки реферата

4.5 Критерии оценки подготовки реферата Успандария подготовки реферата									
Баллы	Характеристики раскрытия темы студентом								
	— студент глубоко и всесторонне усвоил проблему;								
	— уверенно, логично, последовательно и грамотно его излагает;								
	— опираясь на знания основной и дополнительной литературы, тесно								
5	привязывает усвоенные научные положения с практической								
	деятельностью;								
	— умело обосновывает и аргументирует выдвигаемые им идеи;								
	 делает выводы и обобщения; 								
	 свободно владеет понятиями 								
	— студент твердо усвоил тему, грамотно и по существу излагает ее,								
опираясь на знания основной литературы;									
	— не допускает существенных неточностей;								
4	— увязывает усвоенные знания с практической деятельностью;								
	— аргументирует научные положения;								
	 делает выводы и обобщения; 								
	— владеет системой основных понятий								
	— тема раскрыта недостаточно четко и полно, то есть студент освоил								
	проблему, по существу излагает ее, опираясь на знания только								
	основной литературы;								
3	 допускает несущественные ошибки и неточности; 								
3	 испытывает затруднения в практическом применении знаний; 								
	— слабо аргументирует научные положения;								
	— затрудняется в формулировании выводов и обобщений;								
	— частично владеет системой понятий								
	 студент не усвоил значительной части проблемы; 								
	— допускает существенные ошибки и неточности при рассмотрении								
	ee;								
2	 испытывает трудности в практическом применении знаний; 								
	— не может аргументировать научные положения;								
	 не формулирует выводов и обобщений; 								
	— не владеет понятийным аппаратом								
L	<u> </u>								

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1 Типовое тестовое задание

1. Основная причина обострения экологической ситуации в мире состоит:

- а) в росте народонаселения, низком уровне культуры потребления, возрастании темпов и масштабов материального производства;
 - б) развитии науки и появлении новых технологий;
 - в) возникновении новых видов военной техники.

2. Геоэкология - это:

- а) наука, изучающая отношения организмов (особей, популяций, биоценозов и т. п.) между собой и окружающей средой;
- б) наука, изучающая необратимые процессы и явления в природной среде и биосфере, возникающие в результате интенсивного антропогенного воздействия, а также близкие и отдаленные во времени последствия этих воздействий.
- в) наука, изучающая влияние разнообразных экологических факторов на состояние здоровья людей;
- г) разработка норм использования природных ресурсов и среды жизни, допустимых нагрузок на них, форм управления экосистемами различного иерархического уровня, способов «экологизации» хозяйства.

3. Объект исследования в геоэкологии:

- а) окружающая природная среда;
- б) биосфера;
- в) геологическая среда;
- г) природные ресурсы;
- д) геоэкосистема;
- е) географическая оболочка.

4. К геоэкосистеме относят:

- а) экосистему, геосистему, биом, биогеоценоз, геотехсистему;
- б) природный комплекс, биосферу, биоту, ландшафт, синузию;
- в) совокупность живых организмов на территории любой размерности;
- г) совокупность живых организмов, не подразумевающая экологической связи между ними.

5. Экосистемой называют:

- а) совокупность живых организмов;
- б) любую совокупность взаимодействующих живых организмов и условий среды их обитания;
- в) совокупность живых организмов, не подразумевающая экологической связи между ними.

6. Разделами геоэкологии являются:

- а) химическая экология, урбоэкология, агроэкология;
- б) общая экология, гидроэкология, региональная геоэкология;
- в) гидроэкология, экология атмосферы, экология почв, экология недр.

7. Основная заслуга в разработке учения о биосфере принадлежит:

- а) Ж.Б. Ламарку;
- б) Ч. Дарвину;
- в) В.И. Вернадскому;
- г) К. Троллю.

8. Основные положения концепции экосистемы разработаны:

а) А. Тенсли;

- б) Э. Зюссом;
- в) К. Мебиусом.

9. Основоположником ландшафтной экологии (геоэкологии) принято считать:

- а) В.И. Вернадского;
- б) К. Тролля;
- в) Э. Неефа;
- г) В.Б. Сочаву;
- д) А. Тенсли;
- е) К. Мебиуса.

10. Основными принципами геоэкологических исследований являются:

- а) экологичность, комплексность, структурность, историчность, генетичность;
- б) экологичность, комплексность, зональность, региональность, территориальность, устойчивость;
 - в) продуктивность, зональность, иерархичность, генетичность.

11. К новейшим методам геоэкологических исследований относят:

- а) картографический, исторический, сравнительно-экологический;
- б) статистический, геохимический, аэрометоды;
- в) космический, моделирование, использование ПЭВМ.

12. Антропогенное воздействие - это:

- а) мероприятия, способствующие восстановлению природноресурсного потенциала геоэкосистем;
- б) влияние производственной и непроизводственной деятельности людей на свойства природных систем;
- в) негативные последствия хозяйственной деятельности людей (загрязнение, эрозия почв, эвтрофикация водоемов и т. п.).

13. Назовите самый длительный по времени период взаимодействия природы и общества:

- а) биогенный, или адаптационный;
- б) аграрный;
- в) индустриальный.

14. К основным антропогенным изменениям геоэкосистем можно отнести:

- а) загрязнение природной среды, истощение природных ресурсов, нарушение местообитаний растений и животных, опустынивание, разрушение озоносферы;
 - б) урбанизацию, изменение влагооборота, изменение теплового баланса Земли;
- в) нарушение гравитационного равновесия и перемещение литогенного материала, изменение влагооборота и водного баланса, нарушение биологического равновесия и биологического круговорота веществ, преобразование геохимического круговорота, изменение теплового баланса.

Ключ к ответам: 1. a; 2. б; 3. д; 4. a; 5. б; 6. в; 7. в; 8. а; 9. б; 10. б; 11.в; 12.б; 13.а; 14.а.

5.2 Примеры практических работ

Практическая работа №2

Вычисление показателей пластичности, консистенции и усадки грунта

Теоретическая часть

Под пластичностью грунта понимается его способность под воздействием внешних сил изменять форму (деформироваться) без разрыва сплошности и сохранять приданную ему форму после прекращения этого воздействия. Пластичностью при определенной влажности и небольших давлениях обладают только глинистые и лессовые породы, мергели и мел, торф, почвы и некоторые искусственные грунты.

Для характеристики пластичности связанных грунтов используют три показателя: 1) верхний предел пластичности (предел текучести) W_L ; 2) нижний предел пластичности W_D (предел раскатки); 3) число пластичности $I_D = W_L - W_D$.

Верхний предел пластичности представляет собой граничную влажность, при превышении которой грунт переходит из пластичного состояния в текучее. Нижний предел пластичности характеризует граничную влажность между полутвердым и пластичным состоянием грунта. Число пластичности показывает диапазон колебаний влажности, в пределах которого грунт сохраняет пластичное состояние. Чем больше число пластичности, тем грунт пластичнее.

Пластичность связных грунтов определяется составом и свойствами, как твердых частиц грунта, так и взаимодействующей с ним жидкостью. К факторам первой группы относятся гранулометрический состав и химико-минеральный состав, форма частиц, состав обменных катионов. Влияние жидкой компоненты на пластичность обусловливается ее химическим составом и концентрацией растворенных веществ.

Важнейшим фактором, влияющим на пластичность грунтов, является гранулометрический состав. Эта зависимость изучена наиболее хорошо. Установлено, что частицы размером 2-1 мм имеют небольшую пластичность, у частиц с размером менее 1 мм пластичность уже значительна, она сильно зависит от содержания глинистой фракции и возрастает пропорционально увеличению содержания коллоидов, особенно органических. Из всех показателей пластичности верхний предел наиболее тесно связан с гранулометрическим составом, с нижним же пределом связь незначительна.

Минеральный состав также оказывает существенное влияние на пластичность. Максимальная пластичность отмечается для монтмориллонита и наименьшая для каолинита, что связано с соответствующей разностью дисперсности и гидрофильности этих минералов.

Состав и концентрация водного раствора, взаимодействующего с грунтом, также оказывает существенное влияние на его пластичность, поскольку состав раствора влияет на состав обменных катионов, а концентрация во многом определяет толщину диффузного слоя и количество слабосвязанной воды. Повышение концентрации электролита раствора ведет к значительному снижению пластичности, особенно у высокодисперсных грунтов типа монтмориллонита. Тесная связь числа пластичности и дисперсности позволила разработать классификацию связных глинистых грунтов по пластичности (%)

- 1≤ I_P <7 супесь,
- 7 < I_P < 17 суглинок,
- 17 < $I_{\rm P}$ глина.

Сопоставление пределов пластичности и естественной влажности грунтов позволяет ориентировочно судить, в каком состоянии они находятся в естественном залегании, т.е. определить их консистенцию. Консистенция характеризует степень подвижности части под воздействием внешних сил при данной влажности. Если влажность не превышает нижний предел пластичности, то грунт находится в твердой консистенции. При изменении влажности в диапазоне нижнего и верхнего пределов пластичности грунты имеют пластичную консистенцию. Если же влажность больше верхнего предела пластичности, то грунт находится в текучей консистенции.

Применяемые в настоящее время в инженерно-геологической практике стандартные методы определения пределов пластичности (ГОСТ 5180-84 — метод раскатывания грунта в жгут для определения нижнего предела пластичности и метод балансирного конуса для верхнего предела пластичности) не обеспечивают необходимой точности и, как уже давно утверждают многие исследователи, нуждаются в усовершенствовании или даже замене. Метод пенетрации для определения пределов пластичности впервые был использован Π . О. Бойченко. Он предложил определять значение Wp и W_L грунтов на пенетрометре своей конструкции с конусом при вершине 30° и постоянной массой 300 г.

Согласно методике П. О. Бойченко, за нижний предел пластичности принимается влажность, соответствующая глубине погружения конуса в грунт на 4 мм, а за верхний предел — влажность грунта при погружении конуса на глубину 22,5 мм. Указанные величины являются средними глубинами погружения конуса в грунт, влажность которого равна нижнему и верхнему пределам пластичности, определяемым стандартными методами. В качестве верхнего предела пластичности П. О. Бойченко рекомендовал принимать влажность грунта, при погружении конуса на глубину 32 мм, что соответствовало W_L , определенному на приборе В. В. Охотина.

Консистенция грунтов определяется так же, как и пластичность, косвенным и прямым методами. Косвенный метод основан на сопоставлении величины естественной влажности грунта и показателей его пластичности. Согласно СНиП, консистенция оценивается показателем текучести, рассчитываемым по формуле:

$$I_L = (W_0 - W_P)/I_{P}$$

Важнейший недостаток I_L , игнорируемый нормативными документами, заключается в том, что этот показатель по смыслу и форме его определения характеризует физическое состояние, а, следовательно, и механические свойства грунтов, только исключительно для полностью водонасыщенных грунтов нарушенного сложения. В трехфазных грунтах с нарушенной и ненарушенной структурой и даже в водонасыщенных высокоструктурных грунтах различного генезиса I_L непосредственно не характеризует механические свойства. Этих недостатков можно избежать при использовании пенетрационного метода, т.е. прямого метода определения консистенции грунтов. Последний, основан на непосредственном определении механической прочности грунтов с помощью пенетрации.

Усадкой грунта называется уменьшение его объема в результате удаления воды при высыхании или при развитии физико-химических процессов (синерезис, осмос). В наибольшей степени усадка проявляется в глинах, другим же связным грунтам она свойственна в меньшей степени. Необходимо отметить, что усадка — сложный физико-химический процесс, приводящий к изменению структурных связей между частицами.

Величину усадки грунта характеризуют по уменьшению линейных размеров или объема образца. В соответствии с этим различают относительную линейную (b_L) и объемную (b_V) усадки:

$$b_L = (l_1 - l_2)/l_1,$$
 $b_V = (V_1 - V_2)/V_1$

Здесь l_1 и V_1 – начальные длина и объем образца; l_2 и V_2 – длина и объем того же образца после усадки.

Задание: Рассчитать число пластичности I_P , показатель консистенции I_L , линейную m_H и объемную m_V усадку образца грунта цилиндрической формы. Диаметр образца до высушивания d см, после высушивания $-d_1$ см. Высота образца до высушивания H см, после высушивания $-H_1$ см. Сделать выводы о состоянии грунта.

	ONT	IOTT	TT T	DOI	TOTI	TITI
- 13	าสเวน	ант	ιы	301	тан	ии
_	· cap i	IUII.		- cu	40011	

			1	, ,			
№	$W_{ m L}$	Wp	W_0	Н, см	H_1 , см	d, cm	d_1 , см
1	0.12	0.08	0.18	4	3.76	4	3.76
2	0.17	0.11	0.06	4	3.63	4	3.70
3	0.52	0.23	0.12	4	3.95	4	3.77
4	0.26	0.15	0.08	4	3.88	4	3.84
5	0.36	0.20	0.15	4	3.50	4	3.60
6	0.24	0.15	0.03	5	4.76	5	4.80
7	0.40	0.21	0.09	5	4.50	5	4.97

План выполнения работы:

1. Определяем число пластичности. Число пластичности I_P — разность влажностей, соответствующих двум состояниям грунта: на границе текучести W_L и на границе раскатывания W_P . Определяются W_L и W_P по ГОСТ 5180.

$$I_P = W_L - W_P$$

где W_L – влажность грунта на границе текучести; W_P – влажность грунта на границе пластичности.

Пылевато-глинистые грунты подразделяют по числу пластичности:

- 1≤ I_P <7 супесь,
- 7 < I_P < 17 суглинок,
- 17 < I_P глина.
- 2. Определяем показатель консистенции. Консистенция характеризуется показателем текучести I_L отношение разности влажностей, соответствующих двум состояниям грунта: естественному W_0 и на границе раскатывания W_P , к числу пластичности.

$$I_L = (W_0 - W_P)/I_P$$
,

где W_0 – естественная влажность.

В соответствие с ГОСТ 25100-95 по показателю консистенции (текучести) глинистые грунты подразделяются:

Супесь:

$$egin{array}{ll} - & I_L < 0 - {
m Tвердая}; \ - & 0 \leq I_L \leq 1 - {
m пластичная}; \ - & I_L > 1 - {
m Tекучая}. \end{array}$$

Суглинок и глина:

- $I_L < 0$ твердые;
- 0≤ I_L ≤ 0.25 полутвердые;
- 0.25 ≤ I_L ≤ 0.5 тугопластичные;
- 0.5 $\leq I_L \leq 0.75$ мягкопластичные;
- 0.75 ≤ I_L ≤ 1 текучепластичные;
- $I_L > 1$ текучие.
- 3. Линейная усадка: $m_H = (H-H_1)/H$, где H начальная высота образца, см.; H_1 высота образца после высушивания, см.
- 4. Объемная усадка: $m_V = (V-V_I)/V$, где V первоначальный объем образца, см³; V_1 объем образца после высушивания, см³.

Для вычисления первоначального объема и объема после усадки применяют следующую формулу: $V = \pi d^2 H/4$, т.к. образец цилиндрической формы, где H – высота, см; d – диаметр, см.

5.3 Примерные темы рефератов

- 1. Технопромышленные аварии на поверхности Земли.
- 2. Геоэкологическая опасность и геоэкологический риск.
- 3. Природные и техногенные геохимические поля и аномалии.
- 4. Жизнеобеспечивающее и жизнеконтролирующее влияние геохимических неоднородностей геосреды.
- 5. Геохимические и биогеохимические критерии оценки медико-санитарной обстановки.
- 6. Моделирование геохимических полей как на основе анализа источников, так и на основе эмпирических распределений химических веществ в субстратах.
 - 7. Природные геофизические поля и их аномалии.
 - 8. Техногенные геофизические поля и аномалии.
- 9. Жизнеобеспечивающее и жизнеконтролирующее влияние геофизических полей и их аномалий.
 - 10. Геофизические критерии оценки медико-санитарной обстановки.
- 11. Влияние геофизических аномалий и их динамики на устойчивость инфраструктурных систем жизнеобеспечения технопромышленного общества.
- 12. Особенности строения приповерхностного геологического разреза урбанизированных территорий.

- 13. Экологическое значение статических и динамических свойств геологической среды в районах жилой и промышленной застройки.
- 14. Геофизические, геохимические, геоструктурные, факторы, контролирующие экологическое качество территории.
- 15. Инженерно-геологические свойства рельефообразующей толщи в пределах города.
- 16. Влияние геологической среды на устойчивость сооружений, а также на надежность функционирования систем городского жизнеобеспечения.
- 17. Природные и техногенные зоны экогеологической опасности и их влияние на здоровье населения.
 - 18. Индикаторы зон экогеологической опасности.
 - 19. Данные аварийности и функциональных сбоев систем жизнеобеспечения.

5.4 Вопросы к экзамену

- 20. Экологические свойства геологической среды: основные понятия и термины.
- 21. Научные направления и прикладные задачи экогеологии.
- 22. Становление междисциплинарного подхода в геоэкологических исследованиях.
- 23. Общепланетарные экологические свойства геологической среды и современные глобальные изменения.
 - 24. Вопросы глобальной экологии.
 - 25. Антропогенез, как геологический фактор.
- 26. Экогеологические аспекты вопросов устойчивости развития технопромышленной цивилизации на рубеже XX-XXI веков.
- 27. Глобальный и региональный прогноз на основе изучения современной динамики природной среды и палеоэкологических аналогов.
 - 28. Критерии оценки экогеологических условий территорий.
- 29. Биофильные элементы и минеральные ресурсы, необходимые для человеческого сообщества.
 - 30. Ресурсы геологического пространства.
 - 31. Размещение и утилизация отходов.
 - 32. Проблемы роста потребления невосполнимых ресурсов.
 - 33. Технологии восстановления ресурсов и поиска новых ресурсов.
 - 34. Региональные системы расселения.
 - 35. Экологический каркас и зонирование территорий.
 - 36. Негативные, опасные и катастрофические геологические процессы.
 - 37. Природные и техногенные причины катастроф и стихийных бедствий.
- 38. Общие представления о синергетике, как о подходе к изучению открытых природно-техногенных экосистем, находящихся в динамическом неравновесии.
 - 39. Природные, техногенные и синергетические катастрофы.
 - 40. Чрезвычайные ситуации.
 - 41. Стратегия «управления катастрофами».
- 42. Опасные геологические процессы. Землетрясения. Цунами. Вулканические извержения. Наводнения. Метеокатастрофы. Оползни. Снежные лавины.
 - 43. Проседания грунтов.
 - 44. Подземные аварии.
 - 45. Технопромышленные аварии на поверхности Земли.
 - 46. Геоэкологическая опасность и геоэкологический риск.
 - 47. Природные и техногенные геохимические поля и аномалии.
- 48. Жизнеобеспечивающее и жизнеконтролирующее влияние геохимических неоднородностей геосреды.
- 49. Геохимические и биогеохимические критерии оценки медико-санитарной обстановки.

- 50. Моделирование геохимических полей как на основе анализа источников, так и на основе эмпирических распределений химических веществ в субстратах.
 - 51. Природные геофизические поля и их аномалии.
 - 52. Техногенные геофизические поля и аномалии.
- 53. Жизнеобеспечивающее и жизнеконтролирующее влияние геофизических полей и их аномалий.
 - 54. Геофизические критерии оценки медико-санитарной обстановки.
- 55. Влияние геофизических аномалий и их динамики на устойчивость инфраструктурных систем жизнеобеспечения технопромышленного общества.
- 56. Особенности строения приповерхностного геологического разреза урбанизированных территорий.
- 57. Экологическое значение статических и динамических свойств геологической среды в районах жилой и промышленной застройки.
- 58. Геофизические, геохимические, геоструктурные, факторы, контролирующие экологическое качество территории.
- 59. Инженерно-геологические свойства рельефообразующей толщи в пределах города.
- 60. Влияние геологической среды на устойчивость сооружений, а также на надежность функционирования систем городского жизнеобеспечения.
- 61. Природные и техногенные зоны экогеологической опасности и их влияние на здоровье населения.
 - 62. Индикаторы зон экогеологической опасности.
 - 63. Медикоэкологические данные.
 - 64. Данные аварийности и функциональных сбоев систем жизнеобеспечения.
- 65. Специфика территориального анализа статистических данных, имеющих экологическое значение.
 - 66. Наиболее частые ошибки в интерпретации.
 - 67. Экогеологическая экспертиза жилых и промышленных объектов.
 - 68. Виды мониторинга окружающей среды.
 - 69. Основные элементы геологической среды.
 - 70. Почвы, природные и искусственные грунты.
 - 71. Рельеф.
 - 72. Подземные воды.
 - 73. Геологические процессы и явления.
 - 74. Инженерно-геологические процессы и явления.
 - 75. Структура мониторинга геологической среды.
- 76. Последовательность составления картографических моделей геологической среды и организации геомониторинга.
 - 77. Современные подходы к оценке экогеологических обстановок.
- 78. Методы изучения техногенных воздействий на геологическую среду и оценка этих воздействий.
- 79. Эколого-геологическое картирование территорий и составление карты-схемы организации мониторинга.
 - 80. Прогнозные экогеологические карты.
- 81. Примеры карт геоэкологической и экогеологической ориентации (Экологическая карта России и др.).

ТЕХНОЛОГИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

05.03.01 Геология

направленность (профиль) «Геофизика»

(код, направление, профиль)

ТЕХНОЛОГИЧЕСКАЯ КАРТА

Шифр дисциплины по РУП Б1.В.ОД.16					.ОД.16						
Дисциплина Экологическая геология					логия						
Курс	4	семестр	8								
Кафедр	Кафедра горного дела, наук о Земле и природообустройства										
	Бекетова Елена Борисовна, канд.техн.наук, доцент										
Ф.И.О.	препо	давателя,	, звание,	должн	ость ка	федры го	рног	о дела, на	ук о Земле і	1	
природообустройства											
Общ. трудоемкостьчас/ЗЕТ 180/5 Кол-во					Кол-во се	местров	1	Форма ко	нтроля	Экзам	тен
				4. 24/24	I ЛБ _{обш./те}	ек. сем.	-/-	СРС общ./тек.	сем.	144/144	

Компетенции обучающегося, формируемые в результате освоения дисциплины:

- способность использовать знания в области геологии, геофизики, геохимии, гидрогеологии и инженерной геологии, геологии и геохимии горючих ископаемых, экологической геологии для решения научно-исследовательских задач (в соответствии с направленностью (профилем) подготовки) (ПК-1);
- способность самостоятельно получать геологическую информацию, использовать в научноисследовательской деятельности навыки полевых и лабораторных геологических исследований (в соответствии с направленностью (профилем) подготовки) (ПК-2).

Код формируемой Соличество Максимальное Срок									
компетенции	Содержание задания	мероприятий	количество баллов	предоставления					
,	Вве	одный блок		1 1,1,1					
Не предусмотрен									
Основной блок									
ПК-1, ПК-2	Тестирование	4	16	В течение семестра					
ПК-1, ПК-2	Практическая работа	4	20	В течение семестра					
ПК-1, ПК-2	Работа на практических занятиях	4	4	В течение семестра					
ПК-1, ПК-2	Реферат	4	20	В течение семестра					
		Всего:	60						
ПК-1, ПК-2	Экзамен		1 вопрос - 20 2 вопрос - 20	По расписанию					
		Всего:	40						
		Итого:	100						
Дополнительный блок									
ПК-1, ПК-2	Подготовка опорного конспект	га	5	По согласованию с					
ПК-1, ПК-2	Подготовка глоссария		20	преподавателем					
	Всего баллов по дополнит	ельному блоку	25						

Шкала оценивания в рамках балльно-рейтинговой системы МАГУ: «2» - 60 баллов и менее, «3» - 61- Шкала оценивая в рамках балльно-рейтинговой системы МАГУ: «2» - 60 баллов и менее, «3» - 61-80 баллов, «4» - 81-90 баллов, «5» - 91-100 баллов.