Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине Б1.В.ОД.12 Основы математической статистики

Общие сведения

1.	Кафедра	Математики, физики и информационных технологий
2.	Направление подготовки	43.03.02 Туризм профиль "Технология и организация туроператорских и турагентских услуг"
3.	Дисциплина (модуль)	Б1.В.ОД.12 Основы математической статистики
4.	Тип заданий	Тесты, контрольные задания
5.	Количество этапов формирования компетенций (ДЕ, разделов, тем и т.д.)	5

Перечень компетенций

ПК-2: способностью обрабатывать и интерпретировать с использованием базовых знаний математики и информатики данные, необходимые для осуществления проектной деятельности в туризме.

ПК-6: способностью находить, анализировать и обрабатывать научно-техническую информацию в области туристской деятельности.

Критерии и показатели оценивания компетенций

Знания:

основные понятия, связанные с математической статистикой; методы решения задач математической статистики, основы автоматизации решения задач вычислительного характера, необходимые для работы с информацией в глобальных компьютерных сетях.

Умения:

использовать базовые знания и методы математической статистики; применять классические методы математической статистики при решении фундаментальных и прикладных задач; самостоятельно разбираться в мощном математическом аппарате, содержащемся в специальной литературе; доводить решение вероятностной задачи до практически приемлемого результата (уметь проводить доказательства и делать выводы

Навыки:

владения современными знаниями о математике; математическим языком, математическими терминами, математической символикой, методами решения рассматриваемых в курсе задач, основами автоматизации решения задач вычислительного характера; необходимыми умениями для работы с информацией в глобальных компьютерных сетях.

Этапы формирования компетенций

- 1. Выборочный метод.
- 2. Статистические оценки параметров распределения.
- 3. Интервальные оценки параметров распределения.
- 4. Элементы теории корреляции.
- 5. Статистическая проверка статистических гипотез.

Шкала оценивания в рамках балльно-рейтинговой системы

«2» - 60 баллов и менее «3» - 61-80 баллов «4» - 81-90 баллов «5» - 91-100 баллов

1. Тест

Процент правильных ответов	До 60	61-80	81-100
Количество баллов за решенный тест	0,5	1	2

2. Решение задач в самостоятельных аудиторных работах и домашних контрольных работах, а также в индивидуальных заданиях.

- 0,5 балла выставляется, если студент решил все рекомендованные задачи, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 0,3 балла выставляется, если студент решил не менее 85% рекомендованных задач, правильно изложил все варианты решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 0,2 балла выставляется, если студент решил не менее 65% рекомендованных задач, правильно изложил все варианты их решения, аргументировав их, с обязательной ссылкой на соответствующие нормативы (если по содержанию это необходимо).
- 0 баллов если студент выполнил менее 50% задания, и/или невер но указал варианты решения.

Шкала оценивания:

$$\langle 2 \rangle - 60\%$$
 и менее $\langle 3 \rangle - 61-80\%$ $\langle 4 \rangle - 81-90\%$ $\langle 5 \rangle - 91-100\%$

Типовое контрольное задание

- 1. Задано статистическое распределение выборки. Найти:
- а) эмпирическую функцию распределения $F^*(x)$;
- б) точечные оценки параметров распределения: выборочное среднее, исправленную дисперсию, исправленное среднеквадратическое отклонение.

X	i 13	14	16	20
n	i 4	2	1	3

- **2.** По выборке объемом n определены выборочное среднее X_s и исправленное среднее квадратическое отклонение s нормально распределенной случайной величины X. Найти доверительный интервал для оценки неизвестного математического ожидания a и дисперсии σ^2 . Принять P = 0.95.
- **3.** По двум независимым выборкам $n_x = 9$ и $n_y = 10$ извлеченным из нормальных генеральных совокупностей X и Y найдены выборочные средние $\overline{x} = 2,41$ и $\overline{y} = 2,32$. Генеральные дисперсии известны:

$$D(X) = (s_x)^2 = 0.6^2 = 0.36$$
 U $D(Y) = (s_y)^2 = 0.4^2 = 0.16$

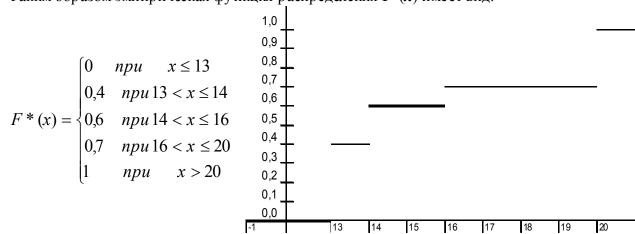
Необходимо при уровне значимости $\alpha = 0.01$ проверить нулевую гипотезу $H_0:M(X) = M(Y)$ о равенстве средних при конкурирующей гипотезе $H_1:M(X) \neq M(Y)$.

4. В результате проведения n опытов полученны n пар значений (x_i ; y_i). Допуская, что x и y связанны линейной зависимостью y = kx + b, методом наименьших квадратов найти коэффициенты k і b, а также выборочный коэффициент корреляции $r_{\rm B}$. Проверить значимость корреляционной зависимости. Принять уровень значимости $\alpha = 0,1$.

x_{i}	0,2	0,4	0,6	0,8	1,0
y_{i}	12,4	14,7	18,2	21,1	23,2

Методические материалы, определяющие процедуры оценивания знаний

Решения типовых контрольных заданий


1. Решение. a) Эмпирической функцией распределения $F^*(x)$ называется относительная частота того, что признак примет значение, меньшее заданного. Другими словами, для данного x эмпирическая функция распределения представляет накопленную частоту

$$F^*(x) = \frac{n_i^{\text{накопл}}}{n} = w_i^{\text{накопл}}$$

Для эмпирической функции распределения рассчитаем относительные частоты по форму ле $\mathbf{w}_i = \mathbf{n}_i / \mathbf{n}$, где \mathbf{n} – объем выборки. Вычисления занесем в таблицу:

$\boldsymbol{x}_{\mathrm{i}}$	$n_{\rm i}$	$w_i = n_i / n$	F*
13	4	0,4	0,4
14	2	0,2	0,6
16	1	0,1	0,7
20	3	0,3	1,0
Σ	n = 10	1,0	

Таким образом эмпирическая функция распределения $F^*(x)$ имеет вид:

б) Выборочные числовые характеристик и вычислим по форму лам:

$$\overline{x}_s = \frac{1}{n} \sum_{i=1}^k x_i n_i$$
 — выборочное среднее; $D_s = \frac{1}{n} \sum_{i=1}^k x_i^2 \ n_i - (\overline{x}_s)^2$ — выборочная дисперсия

Для удобства произведения $\mathbf{x}_{i} \cdot \mathbf{n}_{i}$ и $\mathbf{x}_{i}^{2} \cdot \mathbf{n}_{i}$ вычислим с помощью таблицы:

x_{i}	$n_{\rm i}$	$x_i \cdot n_i$	$x_{i}^{2} \cdot n_{i}$
13	4	52	676
14	2	28	392
16	1	16	256
20	3	60	1200
Σ	10,0	156,0	2524

$$\bar{x}_{6} = \frac{156}{10} = 15,6$$
 $D_{6} = \frac{2524}{10} - (15,6)^{2} = 252,4 - 243,36 = 9,04$

Исправленную дисперсию s^2 найдем по формуле $s^2 = \frac{n}{n-1}D_e = \frac{10}{9}9,04 = 10,04$

Исправленное среднее квадратическое отклонение s равно квадратному корню из исправленной дисперсии

$$s = \sqrt{s^2} = \sqrt{10,04} = 3,17.$$

2. Решение. Доверительный интервал для оценки неизвестного математического ожидания имеет вид:

$$\overline{x}_{e} - \frac{t \cdot s}{\sqrt{n}} \le a \le \overline{x}_{e} + \frac{t \cdot s}{\sqrt{n}}$$

По условию задачи величина t распределена по нормальному закону, поэтому ее значение для интегральной функции Лапласа будет составлять

$$\Phi(t) = \frac{\gamma}{2} = \frac{0.95}{2} = 0.475 \implies t = 1.96$$

Тогда доверительный интервал имеет в ид:

$$1,32 - \frac{1.96 \cdot 0,3}{\sqrt{16}} \le a \le 1,32 - \frac{1.96 \cdot 0,3}{\sqrt{16}}$$
$$1,32 - 0,147 \le a \le 1,32 + 0,147$$
$$1,47 \le a \le 1,17$$

Доверительный интервал для оценки неизвестной дисперсии имеет вид:

$$\frac{(n-1)s^2}{\chi_2^2} < D(X) < \frac{(n-1)s^2}{\chi_1^2}$$

Для величины χ_1^2 вероятность P = (1 + 0.95)/2 = 0.975;

Для величины χ_2^{-2} вероятность P = (1 - 0.95)/2 = 0.025

По числу степеней свободы, равному n-1=15, находим из таблицы распределения $\chi 2$

Находим
$$\chi_1^2 = 6,26$$
 и $\chi_2^2 = 27,5$

Тогда искомый доверительный интервал будет иметь вид:

$$\frac{15 \cdot 0.3^2}{27.5} < D(X) < \frac{15 \cdot 0.3^2}{6.26}$$
$$0.05 < D(X) < 0.22$$

3. Решение. Найдем наблюдаемое значение критерия:

$$z_{\text{набл}} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{D(X)}{n_x} - \frac{D(Y)}{n_y}}} = \frac{2,41 - 2,32}{\sqrt{\frac{0,36}{9} - \frac{0,16}{10}}} = \frac{0,09}{0,155} = 0,58$$

По условию, конкурирующая гипотеза имеет вид H_1 : $M(X) \neq M(Y)$, поэтому критическая область двусторонняя. Найдем правую критическую точку :

$$\Phi(z_{\kappa p}) = \frac{1-\alpha}{2} = \frac{1-0.01}{2} = 0.495$$
 . По таблице интегральной функции Лапласа находим

 $z_{\kappa p} = 2,58$. Так как $z_{\text{набл}} < z_{\kappa p}$, то нулевая гипотеза о равенстве средних *подтвер ждается*. Другими словами, выборочные средние различаются не значимо.

4. Решение. Параметры k и b, а так же выборочный коэффициент корреляции найдем по

таким формулам:
$$k = \frac{n \cdot \sum\limits_{i=1}^{n} x_i y_i - \sum\limits_{i=1}^{n} x_i \cdot \sum\limits_{i=1}^{n} y_i}{n \cdot \sum\limits_{i=1}^{n} x_i^2 - \left(\sum\limits_{i=1}^{n} x_i\right)^2};$$
 (1)

$$b = \frac{\sum_{i=1}^{n} x_{i}^{2} \cdot \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} x_{i} y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}.$$
 (2)
$$r_{e} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2} \cdot \sqrt{n \sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}}}}$$
 (3)

Вычислим необходимые суммы, пользуясь следующей расчетной таблицей:

$x_{\rm i}$	y_{i}	$x_i \cdot y_i$	x_i^2	y_i^2	
0.2	12.4	2.48	0.04	153.76	
0.4	14.7	5.88	0.16	216.09	
0.0	5 18.2	10.92	0.36	331.24	
0.8	3 21.1	16.88	0.64	445.21	
	23.2	23.2	1	538.24	
3.0	89.6	59.4	2.2	1684.5	тогда
		, 5	59.4	- 3 8	9.6
		$k = \phantom{00000000000000000000000000000000000$	2.2	- 3.0	=

$$k = \frac{5 \quad 59.4 \quad - \quad 3 \quad 89.6}{5 \quad 2.2 \quad - \quad 3.0} = \frac{28}{2} = 14$$

$$b = \frac{2.2 \quad 89.6 - \quad 3.0 \quad 59.4}{5 \quad 2.2 - \quad 3.0} = \frac{19}{2} = 9.52$$

Таким образом, искомое уравнение регрессии имеет вид

$$Y = 14 x + 9.52$$

выборочный коэффициент корреляции равен
$$r_{_{g}} = \frac{5 \cdot 59.4 - 3 \cdot 89.6}{\sqrt{5 \cdot 2.2 - (3)^{2}} \cdot \sqrt{5 \cdot 1684.5 - (89.6)^{2}}} = \frac{28.2}{1.41 \cdot 19.86} \approx 0,999,$$

Выборочный коэффициент корреляции r служит для оценки силы линейной корреляционной связи: чем ближе |r| к единице, тем сильнее связь; чем ближе |r| к нулю, тем связь слабее.

Видим, что в нашем случае линейная корреляционная связь очень сильная.

Так как выборочный коэффициент корреляции r положителен, то увеличение одной величины приводит к увеличению другой.

Для проверки статистической значимости корреляционной зависимости величин воспользуемся критерием Стьюдента:

$$t = \frac{|r|}{\sqrt{1 - r^2}} \sqrt{n - 2} = \frac{0.999 \cdot \sqrt{5 - 2}}{\sqrt{1 - (0.999)^2}} = \frac{1.73}{0.045} = 38.4.$$

Для уровня значимости $\alpha = 0,1$ и числа степеней свободы равным n-2=3 по таблице в учебнике, найдем критическое значение критерия $t_{\alpha;(n-2)} = t_{0,1;3} = 2,35.$

Так как, $t_{\text{расчет}} > t_{\alpha(\textbf{\textit{n}-2})}$, то принимаем гипотезу Н. Вывод: корреляционная связь между признаками статистически значимая.

Ссылки на электронные программы для самоподготовки студента

http://test.i-exam.ru/training/student/test.html

Вопросы к зачету

- 1. Задача математической статистики.
- 2. Генеральная совокупность и выборка.
- 3. Повторная и бесповторная выборки.
- 4. Репрезентатив ная выборка.
- 5. Способы отбора.
- 6. Статистическое распределение выборки.
- 7. Эмпирическая функция распределения.
- 8. Полигон и гистограмма.
- 9. Выборочная средняя как оценка математического ожидания теоретического распределения.
- 10. Генеральная и выборочная дисперсия.
- 11. Исправленная дисперсия.
- 12. Точечные оценки параметров распределения.
- 13. Точность оценки, доверительная вероятность и доверительный интервал.
- 14. Доверительный интервал для оценки математического ожидания нормального распределения при известном и неизвестном СКО.
- 15. Условные варианты.
- 16. Обычные начальные и центральные эмпирические моменты.
- 17. Условные эмпирические моменты. Отыскание центральных моментов по условным.
- 18. Оценка отклонения эмпирического распределения от нормального. Асимметрия и эксцесс.
- 19. Функциональная, статистическая и корреляционная зависимости.
- 20. Условные средние. Корреляционная зависимость.
- 21. Две основные задачи теории корреляции.
- 22. Отыскание параметров выборочного уравнения прямой линии регрессии по несгруппированным данным. Корреляционная таблица.
- 23. Отыскание параметров выборочного уравнения прямой линии регрессии по сгруппированным данным. Выборочный коэффициент корреляции и его свойства.
- 24. Пример на отыскание выборочного уравнения прямой линии регрессии.
- 25. Выборочное корреляционное отношение и его свойства.
- 26. Корреляционное отношение как мера корреляционной связи.
- 27. Статистическая гипотеза.
- 28. Виды гипотез.
- 29. Ошибки 1-го и 2-го рода.
- 30. Статистический критерий проверки нулевой гипотезы.
- 31. Наблюдаемое значение критерия.
- 32. Критическая область.
- 33. Область принятия гипотезы.
- 34. Критические точки.
- 35. Отыскание критических областей.
- 36. Мощность критерия.
- 37. Сравнение двух дисперсий нормальных генеральных совокупностей.
- 38. Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны (независимые выборки).
- 39. Связь между двусторонней критической областью и доверительным интервалом.

41. Критерий согласия Пирсона.