МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

филиал федерального государственного бюджетного образовательного учреждения высшего образования «Мурманский арктический государственный университет» в г. Апатиты

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Б.9 Материаловедение и технология конструкционных материалов

(шифр дисциплины и название в строгом соответствии с федеральным государственным образовательным стандартом и учебным планом)

образовательной программы по направлению подготовки бакалавриата

14.03.01 Ядерная энергетика и теплофизика Профиль Теплофизика Академический бакалавриат

(код и наименование направления подготовки с указанием профиля (наименования магистерской программы))

очная форма обучения

форма обучения

Составитель:

Маслобоев В.А., д-р техн. наук, профессор кафедры физики, биологии и инженерных технологий

Утверждено на заседании кафедры физики, биологии и инженерных технологий (протокол № 1 от «24» января 2017 г.)

Зав. кафедрой

Николаев В.Г.

1. НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ). Б1.Б.9 Материаловедение и технология конструкционных материалов

2. АННОТАЦИЯ К ДИСЦИПЛИНЕ

Целью освоения дисциплины «Материаловедение и технология конструкционных материалов» является формирование знаний о природе, свойствах и методах обработки современных материалов, используемых в энергетике и теплофизике.

В результате освоения дисциплины обучающийся должен:

Знать:

- основы материаловедения и технологии конструкционных материалов, электротехнические материалы в качестве компонентов электротехнического и электроэнергетического оборудования;
- строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;
 - сущность явлений, происходящих в материалах в условиях эксплуатации изделий;
 - современные способы получения материалов и изделий из них с заданными свойствами.

Уметь:

- анализировать структуру и свойства электротехнических и конструкционных материалов;
- строить диаграммы состояния двойных сплавов и давать им характеристики;
- использовать термическую и химико-механическую обработки для получения требуемых свойств материалов;
 - использовать методы обработки материалов;
 - применять новейшие достижения в области материаловедения и обработки материалов.

Владеть:

- методиками выполнения расчетов применительно к использованию электротехнических и конструкционных материалов;
- методами использования основных металлических и неметаллических материалов в электротехническом производстве, а именно в электрических машинах, аппаратах, станциях и подстанциях.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ.

- В результате освоения дисциплины формируются следующие компетенции:
- способность осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий (ОПК-1).

4. УКАЗАНИЕ МЕСТА ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ.

Данная дисциплина относится к базовой части Б1.Б.9

При изучении дисциплины используются знания и навыки довузовской подготовки по химии и физике.

5. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ.

Общая трудоемкость дисциплины составляет 5 зачетных единиц или 180 часов.

(из расчета 1 ЗЕТ= 36 часов).

	8 4 4			Контактная работа		гных	IX	на		
Kypc	Семестр	Трудоемкость 3ЭТ		ЛК	ПР	ЛБ	Всего контактных часов	Из них в интерактивных формах	Кол-во часов СРС	Форма контроля
2	3	5	180	32	16	-	48	-	132 (из них 36ч для подготовки к экзамену)	экзамен

6. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ.

№		Конта	ктная р	абота	Всего	Из них	Кол-
п/п	Наименование	ЛК	ПР	ЛБ	контак тных часов	в интера ктивно	во часо в на
	раздела, темы					й форме	CPC
1.	Введение в предмет	2	-	-	2	-	6
2.	Строение и свойства материалов	2	-	-	2	-	6
3.	Теория сплавов	2	-	ı	2	-	6
4.	Железоуглеродистые сплавы	2	-	ı	2	-	6
5.	Методы термической и химико- термической обработки	2	4	-	6	-	6
6.	Легированные стали	2	-	-	2	-	6
7.	Цветные металлы и сплавы	2	-	1	2	-	6
8.	Неметаллические и композиционные материалы	2	-	1	2	-	6
9.	Основы производства металлов. Литье	2	-	-	2	-	6
10.	Обработки металлов давлением	2	-	-	2	-	6
11.	Сварочное производство и пайка	2	-	-	2	-	6
12.	Формообразование поверхностей деталей резанием	2	-	-	2	-	6
13.	Проводниковые материалы	2	4	ı	6	-	6
14.	Полупроводниковые материалы	2	4	-	6	-	6

15.	Диэлектрические материалы. Пробой	2	-	-	2	-	6
16.	Магнитные материалы	2	4	-	6	-	6
	Итого:	32	16	-	48	-	96
	Экзамен						36

Содержание разделов дисциплины

	Содержание разделов дисциплины					
№ п/п	Тема	Содержание				
1	Введение в предмет	Роль материалов в современной технике.				
2	Строение и свойства материалов	Строение металлов и сплавов, диффузионные процессы в металле. Механические свойства металлов и сплавов. Типы связей в твердых телах. Кристаллическое строение металлов. Типы кристаллических решеток металлов. Полиморфизм. Анизотропия свойств металлов. Дефекты кристаллического строения. Виды дефектов, их классификация.				
3	В Теория сплавов Фазово-структурный состав сплавов. Металлические Твердые растворы, химические соединения, гетерогенные с Кристаллизация металлов и сплавов.					
4	Железоуглеро дистые сплавы	Конструкционные металлы и сплавы. Диаграмма состояния системы сплавов железо-цементит. Стали машиностроительные углеродистые стали, их маркировка. Чугуны. Свойства и назначение чугунов. Классификация чугунов. Процессы графитизации. Маркировка чугунов. Серый чугун. Модифицированный серый чугун. Ковкий чугун. Высокопрочный чугун. Специальные чугуны				
5	Методы термической и химико-термической обработки	Классификация видов термообработки. Диаграмма изотермического распада. Основные виды термической обработки сталей: отжиг, закалка, отпуск (старение). Виды отжига 1 рода: диффузионный, рекристаллизационный, для снятия напряжений. Отжиг с фазовой перекристаллизацией: полный, неполный, изотермический отжиг. Нормализация стали. Закалка стали. Отпуск стали и назначение отпуска. Химико-термическая обработка стали. Физические основы химико-термической обработки. Цементация. Нитроцементация стали. Азотирование стали				
6	Легированные стали.	Фазы, образуемые легирующими элементами с железом и углеродом. Влияние легирующих элементов на полиморфизм железа. Классификация и маркировка сталей. Конструкционные машиностроительные легированные стали: цементируемые, улучшаемые, рессорно-пружинные стали. Стали специального назначения. Износостойкие и шарикоподшипниковые стали. Конструкционные коррозионностойкие и жаростойкие стали и сплавы. Жаропрочные стали. Штамповочные стали. Стали с особыми свойствами: магнитомягкие материалы, магнитотвердые				
7	Цветные металлы и сплавы	Алюминий и его сплавы. Свойства алюминия. Алюминиевые сплавы: литые и деформированные. Общая характеристика видов термической обработки сплавов алюминия. Маркировка				

	<u> </u>	
8	Неметаллическ	алюминиевых сплавов. Титан и его сплавы. Свойства, классификация сплавов титана. Маркировка, применение. Медь и ее сплавы. Латуни и их свойства, маркировка, применение. Бронзы. Деформируемые и литейные бронзы. Состав, свойства, марки, области применения. Антифрикционные сплавы. Антифрикционные сплавы на различных основах. Свойства, маркировка Классификация полимерных материалов: термопластичные
	ие и композиционн ые материалы	полимеры, термореактивные полимеры. Пластмассы, их состав, свойства. Электрические материалы, резина. Клеящие материалы. Лакокрасочные материалы. Керамика. Стекло. Древесина. Дисперсноупрочняемые, волокнистые и слоистые композиты. Получение деталей из композиционных материалов. Способы получения порошков. Приготовление смеси. Спекание
9	Основы производства металлов. Литье	Основы металлургического производства. Доменное производство. Кислородно-конверторный способ получения стали. Получение стали в мартеновских, электрических дуговых и индукционных печах. Основы производства алюминия, титана и меди. Основы порошковой металлургии. Основы линейного производства. Модели. Формовочные и стержневые смеси. Технология изготовления песчаных литейных форм и стержней. Литье в металлические формы. Литье под давлением. Центробежное литье. Литье в оболочковую форму. Технология изготовления пластмассовых деталей методом литья
10	Обработки металлов давлением	Теоретические основы пластической деформации металлов. Наклеп. Влияние нагрева на структуру и свойства деформируемого металла. Понятие холодной, неполной и горячей обработке давлением. Температура нагрева. Прокатка металла. Сущность процесса прессования. Волочение. Операции ковки. Объемная горячая и холодная штамповка. Листовая штамповка. Технология изготовления пластмассовых деталей штамповкой из листового материала
11	Сварочное производство и пайка	Физико-химические основы получения сварного соединения. Классификация методов сварки. Газовая сварка и кислородная резка. Контактной сварки. Электрическая дуговая сварки. Ручная дуговая сварка. Автоматическая сварка под слоем флюса. Особенности сварки в среде защитных газов. Плазменная сварка. Ультразвуковая сварка. Сварка трением. Сварка взрывом. Способы пайки. Технологический процесс пайки. Особенности сварки пластмасс. Напыление материалов. Получение неразъемных материалов методом склеивания
12	Формообразование поверхностей деталей резанием	Формообразование поверхностей деталей резанием. Физико-химические основы резания. Точение и обработка на станках токарной группы. Схемы обработки наружных и внутренних цилиндрических и конических поверхностей, винтовых и фасонных поверхностей, сверление, зенкерование, развертывание Фрезерование. Особенности инструмента для фрезерования. Схемы шлифования наружных и внутренних цилиндрических и конических поверхностей. Абразивный инструмент
13	Проводниковы е материалы	Классификация и основные свойства проводниковых материалов. Удельная проводимость и удельное сопротивление проводников. Температурный коэффициент. Удельное сопротивление сплавов. Контактная разность потенциалов и термо-ЭДС металлов. Коэффициент линейного расширения. Биметаллы. Вольфрам. Ртуть. Сверхпроводимость и сверхпроводники. Криопроводники и их

		применение в электротехнике					
14	Полупроводник	олупроводник Классификация полупроводниковых материалов. Собственные и					
	овые	примесные полупроводники. Строение, свойства и технология					
	материалы	получения полупроводников. Зависимость их электропроводности					
		полупроводников от температуры.					
15	Диэлектрическ	Жидкие и твердые диэлектрики, их пробой, виды разрядов.					
	ие материалы.	Газообразные диэлектрики. Нефтяные и синтетические жидкие					
	Пробой	диэлектрики. Растительные масла. Смолы, битумы и воскообразные					
		диэлектрики. Лаки и компаунды. Волокнистые материалы. Слюда и					
		слюдяные материалы. Гибкие пленки и жидкие кристаллы. Старение					
		внутренней изоляции и ресурс электрооборудования.					
16	Магнитные	Свойства магнитных материалов, явления намагничивания.					
	материалы	Магнитотвердые и магнитомягкие материалы. Потери на					
		гистерезисе. Схема замещения и векторная диаграмма катушки с					
		ферромагнитным сердечником. Виды магнитных материалов и					
		области их применения.					

7. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

- 1. Маслобоева С.М. Материаловедение: в 2-х ч.: учеб. пос./ С.М. Маслобоева.- Апатиты: КФ ПетрГУ, 2009.- Ч.1 Основные понятия о строении, структуре и свойствах материалов.
- 2. Маслобоева С.М. Материаловедение: в 2-х ч.: учеб. пос./ С.М. Маслобоева.- Апатиты: КФ ПетрГУ, 2009.- Ч.2 Металлы и сплавы, материалы на основе различных веществ.
- 3. Материаловедение. Технология конструкционных материалов: учеб. Пособие /под ред. В.С.Чередниченко. 5-у изд., стер. М.: Омега- Л,2009. 752 с.

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

Общие сведения

	оощие сведении	
1.	Кафедра	физики, биологии и инженерных технологий
2.	Направление подготовки	14.03.01 Ядерная энергетика и теплофизика профиль Теплофизика
3.	Дисциплина (модуль)	Б1.Б.9 Материаловедение и технология конструкционных материалов

Перечень компетенций

– способность осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий (ОПК-1)

Критерии и показатели оценивания компетенций на различных этапах их формирования

формирования Критерии и показатели оценивания компетенций					
Этап формирования компетенции (разделы, темы дисциплины)	Формиру емая компетен ция	Знать:	Уметь:	Владеть:	Формы контроля сформирова нности компетенци й
Введение в предмет	ОПК-1	основы материаловедения и технологии конструкционных материалов, электротехнические материалы в качестве компонентов электротехнического и электроэнергетического оборудования	анализировать структуру и свойства электротехниче ских и конструкционн ых материалов		
Строение и свойства материалов	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;	анализировать структуру и свойства электротехниче ских и конструкционн ых материалов		Диаграмма
Теория сплавов	ОПК-1	сущность явлений, происходящих в материалах в условиях эксплуатации изделий		методиками выполнения расчетов применительн о к использовани ю электротехнич еских и конструкцион ных материалов	Опрос, диаграмма
Железоуглеродистые сплавы	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;			Опрос, терминологи ческий тест
Методы термической и химико-термической обработки	ОПК-1	сущность явлений, происходящих в материалах в условиях эксплуатации изделий	использовать термическую и химико-механическую обработки для получения требуемых свойств материалов	методами использования основных металлических и неметаллическ их материалов в электротехническом производстве, а именно в	Опрос

				электрических машинах, аппаратах, станциях и подстанциях	
Легированные стали	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;			Опрос
Цветные металлы и сплавы	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;	строить диаграммы состояния двойных сплавов и давать им характеристики		Опрос, терминологи ческий тест
Неметаллические и композиционные материалы	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;			Опрос
Основы производства металлов. Литье	ОПК-1	современные способы получения материалов и изделий из них с заданными свойствами	использовать методы обработки материалов	методами использования основных металлических и неметаллическ их материалов в электротехнич еском производстве, а именно в электрических машинах, аппаратах, станциях и подстанциях	Опрос
Обработки металлов давлением	ОПК-1	современные способы получения материалов и изделий из них с заданными свойствами	использовать методы обработки материалов	методами использования основных металлических и неметаллическ их материалов в электротехнич еском производстве,	Опрос, реферат

Сварочное производство и пайка Формообразование поверхностей деталей	ОПК-1	современные способы получения материалов и изделий из них с заданными свойствами современные способы получения материалов и	использовать методы обработки материалов использовать методы	а именно в электрических машинах, аппаратах, станциях и подстанциях	Реферат Реферат
резанием		изделий из них с заданными свойствами	обработки		
Проводниковые материалы	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;	материалов		Опрос, терминологи ческий тест
Полупроводниковые материалы	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;			Опрос, терминологи ческий тест
Диэлектрические материалы. Пробой	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;			Терминолог ический тест
Магнитные материалы	ОПК-1	строение и основные свойства электротехнических и конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании оборудования;			Реферат

Критерии и шкалы оценивания

1. Критерии оценки реферата

Баллы	Характеристики ответа студента					
4	- студент глубоко и всесторонне усвоил проблему;					
	- уверенно, логично, последовательно и грамотно его излагает;					
	- опираясь на знания основной и дополнительной литературы, тесно					
	привязывает усвоенные научные положения с практической					
	деятельностью;					
	- умело обосновывает и аргументирует выдвигаемые им идеи;					
	- делает выводы и обобщения;					
	- свободно владеет понятиями					
2	- студент твердо усвоил тему, грамотно и по существу излага					
	опираясь на знания основной литературы;					
	- не допускает существенных неточностей;					
	- увязывает усвоенные знания с практической деятельностью;					
	- аргументирует научные положения;					
	- делает выводы и обобщения;					
	- владеет системой основных понятий					
1	- тема раскрыта недостаточно четко и полно, то есть студент освоил					
	проблему, по существу излагает ее, опираясь на знания только					
	основной литературы;					
	- допускает несущественные ошибки и неточности;					
	- испытывает затруднения в практическом применении знаний;					
	- слабо аргументирует научные положения;					
	- затрудняется в формулировании выводов и обобщений;					
	- частично владеет системой понятий					
0	- студент не усвоил значительной части проблемы;					
	- допускает существенные ошибки и неточности при рассмотрении ее;					
	- испытывает трудности в практическом применении знаний;					
	- не может аргументировать научные положения;					
	- не формулирует выводов и обобщений;					
	- не владеет понятийным аппаратом					

2. Критерии оценки опроса

Баллы	Характеристики ответа студента							
2	- студент глубоко и всесторонне усвоил проблему;							
	- уверенно, логично, последовательно и грамотно его излагает;							
	- опираясь на знания основной и дополнительной литературы, тесно							
	привязывает усвоенные научные положения с практической							
	деятельностью;							
	- умело обосновывает и аргументирует выдвигаемые им идеи;							
	- делает выводы и обобщения;							
	- свободно владеет понятиями							
1	- студент твердо усвоил тему, грамотно и по существу излагает ее,							
	опираясь на знания основной литературы;							
	- не допускает существенных неточностей;							
	- увязывает усвоенные знания с практической деятельностью;							
	- аргументирует научные положения;							
	- делает выводы и обобщения;							
	- владеет системой основных понятий							

0,5	- тема раскрыта недостаточно четко и полно, то есть студент освоил							
	проблему, по существу излагает ее, опираясь на знания только							
	основной литературы;							
	- допускает несущественные ошибки и неточности;							
	- испытывает затруднения в практическом применении знаний;							
	- слабо аргументирует научные положения;							
	- затрудняется в формулировании выводов и обобщений;							
	- частично владеет системой понятий							
0	- студент не усвоил значительной части проблемы;							
	- допускает существенные ошибки и неточности при рассмотрении ее;							
	- испытывает трудности в практическом применении знаний;							
	- не может аргументировать научные положения;							
	- не формулирует выводов и обобщений;							
	- не владеет понятийным аппаратом							

3. Критерии оценки диаграммы

3.	Критерии оценки диаграммы							
Баллы	Характеристики ответа студента							
2	- студент глубоко и всесторонне усвоил проблему;							
	- уверенно, логично, последовательно и грамотно его излагает;							
	- опираясь на знания основной и дополнительной литературы, тесно							
	привязывает усвоенные научные положения с практической							
	деятельностью;							
	- умело обосновывает и аргументирует выдвигаемые им идеи;							
	- делает выводы и обобщения;							
	- свободно владеет понятиями							
1	- студент твердо усвоил тему, грамотно и по существу излагает ее,							
	опираясь на знания основной литературы;							
	- не допускает существенных неточностей;							
	- увязывает усвоенные знания с практической деятельностью;							
	- аргументирует научные положения;							
	- делает выводы и обобщения;							
	- владеет системой основных понятий							
0,5	- тема раскрыта недостаточно четко и полно, то есть студент освоил							
	проблему, по существу излагает ее, опираясь на знания только							
	основной литературы;							
	- допускает несущественные ошибки и неточности;							
	- испытывает затруднения в практическом применении знаний;							
	- слабо аргументирует научные положения;							
	- затрудняется в формулировании выводов и обобщений;							
	- частично владеет системой понятий							
0	- студент не усвоил значительной части проблемы;							
	- допускает существенные ошибки и неточности при рассмотрении ее;							
	- испытывает трудности в практическом применении знаний;							
	- не может аргументировать научные положения;							
	- не формулирует выводов и обобщений;							
	- не владеет понятийным аппаратом							

4. Тест (терминологический)

Процент правильных ответов	До 60	61-80	81-100
Количество баллов за решенный тест	1	2	4

Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень вопросов промежуточной аттестации:

Классификация материалов. Конструктивные материалы. Электротехнические материалы. Материалы электронной техники.Виды химической связи. Строение твердых тел.Кристаллы. решетки Бравэ. Индексы Мюллера. Дефекты кристаллических решеток. Изоморфизм и полиморфизм. Стекла, аморфные тела. Понятие о ближнем и дальнем порядке.

Диаграмма состояния железо — цементит. Стали и чугуны. Фазовые превращения в системе Fe-Fe₃C. Методы термической обработки сталей. Фазовые превращения сталей при термической обработке. Методы механических испытаний конструкционных материалов. Титан и его сплавы. Алюминий и его сплавы. Сплавы на основе меди. Легированные стали.

Фазовые равновесия. Уравнение состояния многофазной многокомпонентной системы и условия термодинамического равновесия фаз в многокомпонентной системе. Правило фаз Гиббса. Методы построения фазовых диаграмм. Термический анализ. Фазовые превращения в однокомпонентных системах. Фазовые диаграммы двухкомпонентных систем.

Фазовые диаграммы с неограниченной и ограниченной растворимостью в твердом состоянии. Фазовые диаграммы с эвтектическими и перитектическими превращениями. Правило рычага. Диаграмма состояния с химическим соединением.

Структура кристаллов. Группы трансляций. Индексы узлов, узловых рядов и узловых сеток кристалла. Параметры электромагнитной волны. Дифракция рентгеновских лучей в кристалле. Уравнение Брэгга. Условия Лауэ. Рентгеновские трубки. Дифрактометры. Метод порошка. Вычисление параметров элементарной ячейки кристалла по данным рентгеновской дифракции. Пикнометрическая и рентгеновская плотность кристаллов.

Энергетические уровни свободных атомов. Обменное взаимодействие. Обобществление электронов в кристалле. Энергетические зоны. Понятие об эффективной массе. Распределение электронов. Особенности энергетических диаграмм металлов, полупроводников и диэлектриков.

Физические процессы в проводниках и их свойства. Проводники I и II рода. Физическая природа электропроводности в металлах (классическая теория Друде-Лоренца). Электронный газ. Концентрация свободных электронов. Плотность тока. Связь между электропроводимостью и теплопроводностью металлов. Ограничения классической теории.

Квантовая статистика электронов в металлах. Функция Ферми. Уровни Ферми. Выроденное состояние электронного газа в металлах. Распределение электронов по скоростям. Длина свободного пробега. Температура Дебая. Зависимость удельного сопротивления металлов от температуры.

Влияние примесей и дефектов структуры на удельную проводимость металлов. Электрические свойства металлических сплавов. Сопротивление проводников на высоких частотах. Поверхностный эффект. Сопротивление тонких металлических пленок. Размерный эффект. Контактные явления и термо-э.д.с. Явление сверхпроводимости.

Магнитные свойства твердых тел. Магнитная восприимчивость и намагниченность. Диамагнетизм. Парамагнетизм. Ферромагнетизм. Спиновые волны. Магнитные домены. Антиферромагнетизм и ферромагнетизм. Магнитный резонанс. Магнитные материалы.

Основные физические процессы в полупроводниках и их свойства. Собственный полупроводник и собственная электропроводность. Влияние примесей на электрические свойства полупроводников. Доноры и акцепторы. Основные и неосновные носители заряда. Механизм рассеяния и подвижность носителей заряда. Температурная зависимость проводимости. Неравновесные состояния, механизмы и параметры рекомбинации. Диффузионные и дрейфовые токи. Оптические и фотоэлектрические свойства полупроводников. Эффект Холла.

Материалы для твердотельных лазеров. Требования к матрице и активатору. Принцип генерации когерентного излучения. Кристаллические и стеклообразные матрицы. Методы выращивания

монокристаллов.

Магнитные материалы. Характеристика магнитных материалов. Природа ферромагнитного состояния. Процессы при намагничивании ферромагнетиков. Поведение ферромагнетиков в переменных магнитных полях. Магнитные потери. Состав и строение ферритов. Особенности их магнитного упорядочения. Температурная зависимость намагниченности. Доменные структуры в тонких магнитных пленках. Цилиндрические магнитные домены.

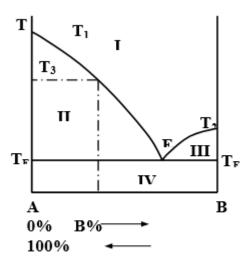
магнитных материалов Классификация по свойствам технологическому Магнитомягкие материалы ДЛЯ постоянных И низкочастотных магнитных полей. Высокочастотные магнитные материалы. Магнитодиэлектрики и высокопроницаемые ферриты. Электрические и магнитные свойства, их зависимость состава, применение OT радиоэлектронике. Магнитотвердые материалы. Высококоэрцитивные сплавы и ферриты. Магнитные ленты и диски для записи информации. Магнитные материалы специализированного назначения.

Физические процессы в диэлектриках и их свойства. Поляризация диэлектриков. Токи смещения и электропроводность диэлектриков. Потери в диэлектриках. Пробой диэлектриков.

Пассивные диэлектрики. Классификация диэлектриков. Основные сведения о строении и свойствах полимеров. Линейные полимеры. Композиционные порошковые пластмассы и слоистые пластики. Электроизоляционные компаунды. Неорганические стекла. Ситаллы. Керамика.

Активные диэлектрики. Классификация активных диэлектриков. Сегнетоэлектрики. Пьезоэлектрики. Пироэлектрики. Электреты. Жидкие кристаллы.

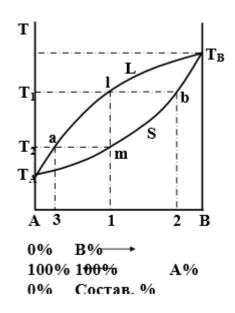
Примерная тематика рефератов:


- 1. Кристаллическое строение металлов.
- 2. Типы кристаллических решеток металлов.
- 3. Полиморфизм.
- 4. Стали специального назначения. Износостойкие и шарикоподшипниковые стали.
- 5. Конструкционные коррозионно-стойкие и жаростойкие стали и сплавы. Жаропрочные стали.
- 6. Штамповочные стали. Стали с особыми свойствами: магнитомягкие материалы, магнитотвердые.
- 7. Антифрикционные сплавы. Антифрикционные сплавы на различных основах. Свойства, маркировка.
- 8. Дисперсноупрочняемые, волокнистые и слоистые композиты. Получение деталей из композиционных материалов. Способы получения порошков. Приготовление смеси.
- 9. Кислородно-конверторный способ получения стали.
- 10. Получение стали в мартеновских, электрических дуговых и индукционных печах.
- 11. Технология изготовления песчаных литейных форм и стержней.
- 12. Литье в металлические формы. Литье под давлением. Центробежное литье. Литье в оболочковую форму. Технология изготовления пластмассовых деталей методом литья.
- 13. Влияние нагрева на структуру и свойства деформируемого металла.
- 14. Понятие холодной, неполной и горячей обработке давлением. Температура нагрева.
- 15. Прокатка металла. Сущность процесса прессования. Волочение. Операции ковки.
- 16. Объемная горячая и холодная штамповка. Листовая штамповка.
- 17. Технология изготовления пластмассовых деталей штамповкой из листового материала.
- 18. Физико-химические основы получения сварного соединения.
- 19. Классификация методов сварки.
- 20. Газовая сварка и кислородная резка.
- 21. Контактной сварки. Электрическая дуговая сварки. Ручная дуговая сварка.
- 22. Автоматическая сварка под слоем флюса. Особенности сварки в среде защитных газов.
- 23. Плазменная сварка. Ультразвуковая сварка. Сварка трением. Сварка взрывом.
- 24. Способы пайки. Технологический процесс пайки.

- 25. Особенности сварки пластмасс. Напыление материалов.
- 26. Получение неразъемных материалов методом склеивания.
- 27. Магнитотвердые и магнитомягкие материалы. Потери на гистерезисе.
- 28. Схема замещения и векторная диаграмма катушки с ферромагнитным сердечником.
- 29. Виды магнитных материалов и области их применения.
- 30. Строение металлов и сплавов, диффузионные процессы в металле.
- 31. Механические свойства металлов и сплавов.
- 32. Типы связей в твердых телах.
- 33. Анизотропия свойств металлов.
- 34. Дефекты кристаллического строения.
- 35. Виды дефектов, их классификация.
- 36. Фазово-структурный состав сплавов.
- 37. Металлические сплавы.
- 38. Твердые растворы, химические соединения, гетерогенные системы.
- 39. Кристаллизация металлов и сплавов.
- 40. Конструкционные металлы и сплавы.
- 41. Диаграмма состояния системы сплавов железо-цементит.
- 42. Стали машиностроительные углеродистые стали, их маркировка.
- 43. Чугуны. Свойства и назначение чугунов. Классификация чугунов.
- 44. Процессы графитизации. Маркировка чугунов.
- 45. Серый чугун. Модифицированный серый чугун.
- 46. Ковкий чугун. Высокопрочный чугун.
- 47. Специальные чугуны.
- 48. Классификация видов термообработки. Диаграмма изотермического распада.
- 49. Основные виды термической обработки сталей: отжиг, закалка, отпуск (старение).
- 50. Виды отжига 1 рода: диффузионный, рекристаллизационный, для снятия напряжений.
- 51. Отжиг с фазовой перекристаллизацией: полный, неполный, изотермический отжиг.
- 52. Нормализация стали. Закалка стали. Отпуск стали и назначение отпуска.
- 53. Химико-термическая обработка стали. Физические основы химико-термической обработки.
- 54. Цементация. Нитроцементация стали. Азотирование стали.
- 55. Фазы, образуемые легирующими элементами с железом и углеродом.
- 56. Влияние легирующих элементов на полиморфизм железа.
- 57. Классификация и маркировка сталей.
- 58. Конструкционные машиностроительные легированные стали: цементируемые, улучшаемые, рессорно-пружинные стали.
- 59. Алюминий и его сплавы. Свойства алюминия. Алюминиевые сплавы: литые и деформированные.
- 60. Общая характеристика видов термической обработки сплавов алюминия. Маркировка алюминиевых сплавов.
- 61. Титан и его сплавы. Свойства, классификация сплавов титана. Маркировка, применение.
- 62. Медь и ее сплавы.
- 63. Латуни и их свойства, маркировка, применение.
- 64. Бронзы. Деформируемые и литейные бронзы. Состав, свойства, марки, области применения.
- 65. Классификация полимерных материалов: термопластичные полимеры, термореактивные полимеры.
- 66. Пластмассы, их состав, свойства.
- 67. Электрические материалы, резина. Клеящие материалы. Лакокрасочные материалы. Керамика. Стекло. Древесина.
- 68. Основы металлургического производства.
- 69. Доменное производство.

- 70. Основы производства алюминия, титана и меди.
- 71. Основы порошковой металлургии.
- 72. Основы линейного производства. Модели. Формовочные и стержневые смеси.
- 73. Теоретические основы пластической деформации металлов. Наклеп.
- 74. Классификация и основные свойства проводниковых материалов.
- 75. Классификация полупроводниковых материалов.
- 76. Жидкие и твердые диэлектрики, их пробой, виды разрядов.
- 77. Свойства магнитных материалов, явления намагничивания.

Пример диаграммы.


1. Первый тип диаграмм. В этом случае компоненты А и В неограниченно растворимы в жидком состоянии, а в твердом состоянии не образуют ни растворов, ни химических соединений. Абсолютной нерастворимости компонентов друг в друге не существует. Тем не менее, в некоторых случаях с достаточным приближением можно считать, что из жидкости выделяются в виде отдельных фаз чистые компоненты. Это наблюдается, например, для систем Pb-Ag, Cd-Bi и др. Диаграмма состояния для подобных систем схематически представлена на рисунке. Жидкий расплав (поле 1) характеризуется тем, что в известных пределах можно произвольно изменять н его температуру, и состав, не вызывая появления новых фаз (С=2). Линии Т1Е и Т2Е ограничивают области (поле II и III), отвечающие моновариантным двухфазным равновесиям. Это означает, например, что если задана температура, то состав жидкой фазы, находящейся в равновесии с чистым компонентом А или В, будет не произвольным, а строго определенным. Так. при температуре Т3 состав жидкости, находящейся в равновесии с твердым А, определяется пересечением горизонтальной прямой, идущей на уровне Т3 с линией ликвидуса Т1Е, т.е. соответствует точке а на оси абсцисс. В поле ІІ существуют две фазы - расплав переменного состава и твердый компонент А. Поле III также определяет область существования двух фаз твердого компонента В и расплава переменного состава. В поле IV находится механическая смесь твердых А и В.

Первый тип диаграммы состояния

2. В этом случае компоненты A и B неограниченно растворимы друг в друге как в жидком, так и в твердом состоянии и не образуют между собой химических соединений. Системы такого типа обычно образуются близкими по своей природе компонентами, например, Cu-Ni, Ge-Si, Bi-Sb и т.д. На рис.7 схематически представлена диаграмма такой системы. Видно, что кристаллы твердого раствора, находящегося в равновесии с расплавом состава 1 при температуре T), имеют состав, отвечающий точке 2 (твердая фаза обогащена более тугоплавким компонентом). В процессе охлаждения системы в интервале T1-T2 составы равновесных фаз меняются по линиям

ликвидуса (отрезок 1 a) и солидуса (отрезок bm). При этом жидкость обогащается более легкоплавким компонентом и при окончании кристаллизации состав твердой фазы приближается к исходному составу расплава. Последние порции жидкости при температуре Т2, находящейся в равновесии с кристаллами 1, будут иметь состав 3. В интервале температур ТА-ТВ составы твердой и жидкой фаз существенно отличаются друг от друга. Это позволяет в случае таких сплавов осуществлять дробную кристаллизацию, т.е. выделять один из компонентов в почти чистом состоянии. Заметим, что в обычных условиях кристаллизации не может достигаться состояние равновесия, и поэтому выделяющиеся твердые растворы не имеют совершенно однородной структуры. Приблизиться к такой структуре можно лишь при чрезвычайно медленном охлаждении, когда при каждой температуре успевает установиться равновесие, для достижения которого должно произойти изменение состава ранее выделившихся кристаллов твердого раствора. Этим объясняется, что в практических условиях при кристаллизации сплавов наблюдается явление ликвации, состоящее в том, что наружные и внутренние области кристаллов твердых растворов более или менее сильно отличаются друг от друга по составу. В некоторых случаях ликвацию устраняют путем длительной выдержки при высоких температурах, однако, естественно, ниже линии солидуса.

Примерный терминологический тест:

Фаза – часть объема вещества, ограниченная поверхностью раздела, при переходе через которую скачком меняется структура, химический состав, свойства вещества.

Интерметаллидные соединения – химические соединения между двумя металлами.

Число степеней свободы – количество термодинамических параметров, при изменении которых фазовый состав вещества остается неизменным.

Твердые растворы — кристаллы, у которых один из компонентов образует собственную кристаллическую решетку, а второй присутствует в виде отдельных атомов, то есть собственной кристаллической решетки не имеет. Первый компонент называют растворителем, а второй — растворенным компонентом.

Диаграмма состояния – график, описывающий изменение структурного и фазового состава сплава при изменении температуры. Диаграммы состояния строятся в координатах температура – химический состав.

Ликвация — процесс, при котором часть структуры сплава отличается по своему химическому строению от основного состава. В реальных сплавах всегда происходит процесс ликвации.

Термическая обработка — комплекс мероприятий, направленных на изменение внутреннего строения сплава и его свойств и заключающийся в сочетании определенных этапов нагрева и, выдержки и охлаждения с заданной скоростью.

Отжиг – термическая обработка, заключающаяся в нагреве стали выше критической температуры (структура аустенит), выдержки и медленном охлаждении.

Отжиг первого рода направлен на возвращение в равновесное состояние металла, подвергнутого предварительной пластической деформации.

Отжиг второго рода заключается в нагревании стали выше критической температуры аустенита, выдержки и охлаждении.

Закаливаемость – способность стали существенно изменять свои свойства после закалки

Прокаливаемость – способность стали образовывать мартенсит при низких критических скоростях охлаждения.

Легированной называется сталь, содержащая в своем составе один или несколько специально введенных легирующих элементов в количестве, заметно изменяющем свойства стали

Нормализация — термообработка, состоящая из: нагрева выше критической температуры и охлаждении на воздухе при нормальных условиях (20° C). Особая среди температур охлаждения, при которой решающее влияние на структуру стали оказывает химический состав.

Бронза – сплав меди с любым легирующим элементом кроме цинка.

Латунь – сплав меди и цинка (до 45% цинка).

Примерные вопросы опроса:

- 1. Перечислите основные свойства металлов. Объясните их природу на основе электронного строения металлов.
- 2. Какое строение имеют металлы? Чем отличаются кристаллические вещества от аморфных?
- **3.** Дайте определение кристаллической решетке и кристаллической ячейки. Назовите известные вам типы кристаллических решеток.
- 4. Что такое анизотропия? Чем объясняется анизотропия кристаллов?
- **5.** Что такое степень переохлаждения? Как она зависит от скорости охлаждения при кристаллизации металлов?
- 6. Дайте определение следующим понятиям: компонент, фаза, структура.
- 7. Что называется модифицированием? Какова его цель?
- 8. Назовите типы сплавов и условия их образования.
- 9. Какие методы упрочнения сплавов вам известны? Охарактеризуйте их.
- 10. Что такое перекристаллизация? Как меняются структура и свойства сплавов при перекристаллизации?
- 11. Что такое дисперсионное твердение? Как меняются структура и свойства сплавов в результате дисперсионного твердения?
- 12. Что такое наклеп? Как меняются структура и свойства металлов при наклепе?
- 13. Что такое наклеп? Как меняется структура и свойства металлов при наклепе?
- 14. Что называется рекристаллизацией? Как определяется температура рекристаллизации?
- 15. Какая пластическая деформация называется холодной (горячей)? Какая деформация сопровождается упрочнением?
- 16. Назовите основные операции термической обработки сталей.
- 17. Что такое отжиг? Укажите его назначение.
- 18. Что такое нормализация? Укажите цели этой операции для сталей разного состава.
- 19. Что такое закалка? Укажите цели закалки.
- 20. Что такое закаливаемость и прокаливаемость? Как они зависят от состава сталей?
- 21. Как можно снизить закалочные напряжения? Укажите способы закалки, понижающие закалочные напряжения. Как влияет конструкция детали на закалочные напряжения?
- 22. Что такое отпуск и зачем его выполняют?
- 23. Перечислите, на какие свойства металла влияет размер зерна.
- 24. Влияние степени переохлаждения на размер зерна.
- 25. Объясните, как протекает процесс кристаллизации.
- 26. Охарактеризуйте методы упрочнения металлических сплавов.
- 27. Что называется сплавом?
- 28. Дайте определение основным видам коррозии металлов.

- **29.** Дайте определение газовой коррозии. Причины возникновения. Процесс протекания. Последствия.
- 30. Профилактика и способы борьбы с газовой коррозией.
- 31. Почему для изготовления деталей в производстве не применяют чистые металлы?
- **32.** Дайте определение электрохимической коррозии. Причины возникновения. Процесс протекания. Последствия.
- 33. Профилактика и способы борьбы с электрохимической коррозией.
- 34. Объясните необходимость добавления в сплав компонентов.
- 35. Перечислите и охарактеризуйте основные причины возникновения коррозии.
- **36.** Какая из причин возникновения коррозии (на ваш взгляд) наиболее часто встречается при эксплуатации машинно тракторного парка?
- **37.** Какая из причин возникновения коррозии (на ваш взгляд) наиболее опасна при эксплуатации машинно тракторного парка? Наименее опасна?
- **38.** Охарактеризуйте применение химически стойких сплавов, как один из методов защиты металлов от коррозии.
- 39. Охарактеризуйте применение неметаллических покрытий, как один из способов защиты поверхности металлов от коррозии.
- **40.** Охарактеризуйте применение гальванических покрытий, как один из способов защиты поверхностей готовых изделий от коррозии и восстановление изношенных деталей.
- 41. Промасливание и консервация деталей, как один из способов защиты поверхностей готовых изделий от коррозии.
- 42. Перечислите и охарактеризуйте различия в подготовке изделия (детали), перед нанесением гальванического и лакокрасочного защитных слоев.
- 43. Назовите примеси сталей. Какие примеси являются вредными, а какие полезными?
- 44. Что такое красноломкость? Как предупредить этот дефект?
- 45. Как разделяются стали по качеству?
- 46. Как обозначаются марки углеродистых и легированных сталей?
- 47. Какие стали являются легированными? Какова цель легирования?
- 48. Назовите марки улучшаемых, рессорно пружинных и шарикоподшипниковых сталей?
- 49. Укажите технологию упрочнения деталей. Какие свойства необходимо обеспечить при термической обработке?
- 50. Укажите особенности автоматных сталей.
- 51. Перечислите виды чугунов.
- 52. Охарактеризуйте наиболее и наименее прочные чугуны.
- 53. Как получают отливки из серого, высокопрочного и ковкого чугунов?
- 54. Укажите маркировку чугунов.
- 55. Охарактеризуйте марки сталей, устойчивых против коррозии. Укажите области применения этих сталей.
- 56. Что такое жаропрочность и жаростойкость? Назовите области применения жаропрочных и жаростойких сталей и сплавов.
- 57. Назовите материалы, обладающие низким электрическим сопротивлением (проводники) и высоким сопротивлением. Укажите область их применения.
- 58. Назовите марки и области применения износостойких сталей.
- 59. Какие высокопрочные стали вы знаете?

9. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ).

основная литература:

- 1. Маслобоева С.М. Материаловедение: в 2-х ч.: учеб. пос. Ч.1 Основные понятия о строении, структуре и свойствах материалов./ С.М. Маслобоева. Апатиты: КФ ПетрГУ, 2009. 103 с.
- 2. Маслобоева С.М. Материаловедение: в 2-х ч.: учеб. пос. Ч.2 Металлы и сплавы, материалы на основе различных веществ / С.М. Маслобоева. Апатиты: КФ ПетрГУ, 2010. 123 с.

дополнительная литература:

- 3. Материаловедение и технологии конструкционных материалов : учебное пособие / О.А. Масанский, В.С. Казаков, А.М. Токмин и др. ; Министерство образования и науки Российской Федерации, Сибирский Федеральный университет. Красноярск : Сибирский федеральный университет, 2015. 268 с. [Электронный ресурс]. URL: //biblioclub.ru/index.php?page=book&id=435698
- 4. Материаловедение. Технология конструкционных материалов: учеб. пособие / под ред. В.С. Чередниченко. 5-е изд., стер. М.: Омега- Л, 2009. 752 с.

Электронные образовательные ресурсы (ЭОР):

- 1. Университетская библиотека ONLINE http://biblioclub.ru/
- 2. Электронно-библиотечная система Юрайт https://biblio-online.ru/

10. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ" (ДАЛЕЕ - СЕТЬ "ИНТЕРНЕТ"), НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ).

1. Российская государственная библиотека - www.rsl.ru, www.leninka.ru

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ.

Приступая к изучению дисциплины, студенту необходимо внимательно ознакомиться с тематическим планом занятий, списком рекомендованной литературы. Следует уяснить последовательность выполнения индивидуальных учебных заданий. Самостоятельная работа студента предполагает работу с научной и учебной литературой, умение создавать тексты. Уровень и глубина усвоения дисциплины зависят от активной и систематической работы на лекциях, изучения рекомендованной литературы, выполнения письменных заданий.

При изучении дисциплины студенты выполняют следующие задания:

- изучают рекомендованную научно-практическую и учебную литературу;
- выполняют задания, предусмотренные для самостоятельной работы.

Основными видами аудиторной работы студентов являются лекции и практические занятия.

В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации на практическое занятие и указания на самостоятельную работу.

Качество учебной работы студентов преподаватель оценивает с использованием технологической карты дисциплины, размещенной на сайте МАГУ.

Планы практических занятий

1. ДИАГРАММА СОСТОЯНИЯ ЖЕЛЕЗО – УГЛЕРОД

План:

Компоненты и фазы железоуглеродистых сплавов

Значение точек и линий диаграммы железо – цементит

Превращение сталей в твердом состоянии

Превращения чугунов

Превращения в сплавах системы железо – графит

Влияние углерода и постоянных примесей на свойства железо-углеродистых сплавов

Литература: [3, стр. 56-72].

Вопросы для самоконтроля

- 1. Назовите компоненты железоуглеродистых сплавов.
- 2. Какое влияние оказывает углерод на свойства железо-углеродистых сплавов.

Задание для самостоятельной работы

Дидактический материал преподавателя

2. ТЕРМИЧЕСКАЯ И ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СПЛАВОВ

План:

Отжиг сталей

Термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии

Превращения в сталях при нагреве до аустенитного состояния

Превращение аустенита при различных степенях переохлаждения

Закалка

Отпуск закаленных сталей

Химико-термическая обработка сплавов

Термомеханическая обработка

Литература: [3, стр, 82-125].

Вопросы для самоконтроля

- 1. Что такое рекристаллизационный отжиг?
- 2. Что такое перекристаллизационный отжиг?
- 3. Что такое изотермический отжиг?
- 4. Что такое сфероидизирующий отжиг?
- 5. Как правильно выбрать температуру нагрева под закалку?
- 6. Расскажите про основные процессы, лежащие в основе любой химико-термической обработки сплавов? (диссоциация, адсорбция, диффузия)

Задание для самостоятельной работы

Дидактический материал преподавателя

3. МАТЕРИАЛЫ В ТЕПЛОТЕХНИКЕ И ТЕПЛОЭНЕРГЕТИКЕ

План:

Свойства сталей, обеспечивающие устойчивость к воздействию температуры и рабочей среды Материалы котельных установок и паровых турбин Чугуны. Маркировка, структура, свойства

Литература: [3, стр, 170-214].

Вопросы для самоконтроля

- 1. Где применяются углеродистые стали в теплотехнике и теплоэнергетике?
- 2. Где применяются перлитные стали в теплотехнике и теплоэнергетике?
- 3. Где применяются мартенситные стали в теплотехнике и теплоэнергетике?

Задание для самостоятельной работы

Дидактический материал преподавателя

4. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

План:

Литейное производство Обработка металлов давлением Сварочное производство

Литература: [3, стр. 235-267].

Вопросы для самоконтроля

- 1. Назовите литейные свойства сплавов.
- 2. Расскажите про способы изготовления отливок.
- 3. Расскажите про электродуговую сварку.

Задание для самостоятельной работы

Дидактический материал преподавателя

12. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ), ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ (ПРИ НЕОБХОДИМОСТИ)

Программное обеспечение:

- 1. Операционная система MS Windows;
- 2. Офисный пакет LibreOffice;
- 3. Web-браузер.

13. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

No	Наименование оборудованных учебных кабинетов,	Фактический адрес
Π/Π	объектов для проведения занятий с перечнем основного	учебных кабинетов и
	оборудования	объектов, номер ауд.
1.	Учебная аудитория для проведения занятий лекционного	184209,
	типа, занятий семинарского типа, курсового	Мурманская область,
	проектирования (выполнения курсовых работ), групповых и	город Апатиты, улица
	индивидуальных консультаций, текущего контроля и	Энергетическая, дом 19,
	промежуточной аттестации	здание Учебного корпуса
		№ 3, ауд. 116
	Мебель аудиторная (столы, стулья, доска аудиторная),	
	переносное мультимедийное оборудование	
	(проектор, экран)	
2.	Лаборатория молекулярной физики и материаловедения	184209,
		Мурманская область,
	Доска, столы ученические, стулья ученические	город Апатиты, улица
	мультимедийное оборудование (проектор), измерительные	Энергетическая, дом 19,
	стенды-12 шт., цифровые мультиметры-6 шт., звуковой	здание Учебного корпуса
	генератор-1 шт., источники питания-3 шт.	№ 2, ауд. 218
3.	Помещение для самостоятельной работы студентов	184209,
		Мурманская область,
	Доска аудиторная, столы компьютерные, стулья «Контакт»	город Апатиты, улица
	Мультимедийный проектор Toshiba TLP-X2000 – 1 шт.,	Энергетическая, дом 19,
	экран проекционный матовый – 1 шт.	здание Учебного корпуса
	13 ПЭВМ	№ 5, ЛИТ 3
	Монитор Acer AL 1917 19" – 13 шт., клавиатура – 13 шт.,	
	мышь – 13 шт.	

14. ТЕХНОЛОГИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ. ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

14.03.01 Ядерная энергетика и теплофизика профиль – Теплофизика Академический бакалавриат

ТЕХНОЛОГИЧЕСКАЯ КАРТА

Шифр дисці	Шифр дисциплины по РУП Б1.Б.9									
Дисциплина Материаловедение и технология конструкционных материалов										
Курс 2 семестр 3										
Кафедра	Кафедра физики, биологии и инженерных технологий									
Ф.И.О. преподавателя, звание, должность Маслобоев В.А., д-р техн. наук, профессор кафедры физики, биологии и инженерных технологий										
Общ. трудоемкостьчас/ЗЕТ 180/5 Кол-во се				во сем	естров	1	Интерактивные формы _{общ./тек.} -/-			-/-
ЛКобщ./тек. сем.	32/32	ПР/СМо	бщ./тек. сем.	16/16	ЛБ _{общ./п}	ек. сем	_{1.} -/-	Форма контроля	экз	амен

Содержание задания	Количество мероприятий	Максимальное количество баллов	Срок предоставления				
Вводный блок							
Не предусмотрено							
Основной блок							
Опрос	10	20	На практических занятиях				
Терминологический тест	5	20	На практических занятиях				
Диаграмма	2	4	На практических занятиях				
Реферат	4	16	По согласованию с				
	4 16		преподавателем				
	Всего:	60					
Экзамен	Вопрос 1	20	В сроки сессии				
	Вопрос 2	20	В сроки сессии				
	Всего:	40					
	Итого:	100					
Дополнительный блок							
Не предусмотрено	_	_					

Шкала оценивая в рамках балльно-рейтинговой системы МАГУ: «2» - 60 баллов и менее, «3» - 61-80 баллов, «4» - 81-90 баллов, «5» - 91-100 баллов.

15. ИНЫЕ СВЕДЕНИЯ И МАТЕРИАЛЫ НА УСМОТРЕНИЕ ВЕДУЩЕЙ КАФЕДРЫ. Не предусмотрено.

16. ОБЕСПЕЧЕНИЕ ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ

Для обеспечения образования инвалидов и лиц с ограниченными возможностями здоровья реализация дисциплины *Б1.Б.9 «Материаловедение и технология конструкционных материалов»* может осуществляться в адаптированном виде, с учетом специфики освоения и дидактических требований, исходя из индивидуальных возможностей и по личному заявлению обучающегося.